Advertisement

Amino Acids

, Volume 50, Issue 7, pp 841–862 | Cite as

Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line

  • Peng Chen
  • Ru Li
  • Ruiyang Zhou
Original Article

Abstract

Cytoplasmic male sterility (CMS) is widely used in plant breeding and represents a perfect model to understand cyto-nuclear interactions and pollen development research. Protein phosphorylation is ubiquitous and is involved in the regulation of diverse cellular processes. To reveal the possible mechanism of CMS and pollen development in kenaf, we performed an iTRAQ-based comparative phosphoproteome analysis in the anthers of a CMS line and wild-type plant (Wt). Whole transcriptome unigenes of kenaf as the reference genome, we identified a total of 3045 phosphorylated sites on 1640 peptides corresponding to 974 unique proteins. 292 of the peptides which corresponding to 247 unique proteins were differentially phosphorylated (fold change ≥ 1.20 with P value< 0.05) between these two materials. 113 and 134 proteins were characterized as up-regulated or down-regulated phosphorylated, respectively. An evaluation of the phosphoproteome and proteomic results indicated that the most significantly phosphorylated proteins were not associated with abundant changes at the protein level. Bioinformatics analysis demonstrated that many of these proteins were involved in various biological processes which may play key roles in pollen development, including carbohydrate metabolism, energy metabolism, transport, gene expression regulation, signal transduction, and cell cycle control. Our results provide insight into the CMS mechanism and pollen development in kenaf from a protein phosphorylation perspective.

Keywords

Kenaf Pollen Cytoplasmic male sterility (CMS) Phosphoproteome iTRAQ 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 31560341) and the earmarked fund for Modern Agro-industry Technology Research System (CARS-16-E14). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary material

726_2018_2564_MOESM1_ESM.xlsx (12 mb)
Supplementary material 1 (XLSX 12298 kb)
726_2018_2564_MOESM2_ESM.xlsx (451 kb)
Supplementary material 2 (XLSX 451 kb)
726_2018_2564_MOESM3_ESM.xlsx (17 kb)
Supplementary material 3 (XLSX 17 kb)
726_2018_2564_MOESM4_ESM.xlsx (113 kb)
Supplementary material 4 (XLSX 113 kb)
726_2018_2564_MOESM5_ESM.xlsx (46 kb)
Supplementary material 5 (XLSX 46 kb)

References

  1. Baxter CJ, Foyer CH, Turner J, Rolfe SA, Quick WP (2003) Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J Exp Bot 54(389):1813–1820.  https://doi.org/10.1093/jxb/erg196 CrossRefPubMedGoogle Scholar
  2. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240.  https://doi.org/10.1093/jxb/ert375 CrossRefPubMedGoogle Scholar
  3. Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137(3):1049CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FC, Jaehning JA, Kim Y-J, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14(5):553–557.  https://doi.org/10.1016/j.molcel.2004.05.011 CrossRefPubMedGoogle Scholar
  5. Chao Q, Gao ZF, Wang YF, Li Z, Huang XH, Wang YC, Mei YC, Zhao BG, Li L, Jiang YB, Wang BC (2016) The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Plant Mol Biol 91(3):287–304.  https://doi.org/10.1007/s11103-016-0466-7 CrossRefPubMedGoogle Scholar
  6. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23(2):81–90.  https://doi.org/10.1016/j.tig.2006.12.004 CrossRefPubMedGoogle Scholar
  7. Chen P, Ran SM, Li R, Huang ZP, Qian JH, Yu ML, Zhou RY (2014) Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed 34(4):1879–1891.  https://doi.org/10.1007/s11032-014-0146-8 CrossRefGoogle Scholar
  8. Chou MF, Schwartz D (2002) Biological sequence motif discovery using motif-x. Curr Protoc Bioinform.  https://doi.org/10.1002/0471250953.bi1315s35 Google Scholar
  9. Christensen AR, Malcomber ST (2012) Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales. EvoDevo 3(1):4.  https://doi.org/10.1186/2041-9139-3-4 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clement C, Burrus M, Audran JC (1996) Floral organ growth and carbohydrate content during pollen development in lilium. Am J Bot 83(4):459–469.  https://doi.org/10.2307/2446215 CrossRefGoogle Scholar
  11. Di Giorgio JAP, Bienert GP, Ayub ND, Yaneff A, Barberini ML, Mecchia MA, Amodeo G, Soto GC, Muschietti JP (2016) Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in Arabidopsis thaliana. Plant Cell 28(5):1053CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111(1):137CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18(6):1438CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fíla J, Radau S, Matros A, Hartmann A, Scholz U, Feciková J, Mock H-P, Čapková V, Zahedi RP, Honys D (2016) Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Mol Cell Proteom 15(4):1338–1350.  https://doi.org/10.1074/mcp.m115.051672 CrossRefGoogle Scholar
  15. Fujii S, Toriyama K (2008) DCW11, down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2C is related to cytoplasmic male sterility. Plant Cell Physiol 49(4):633–640.  https://doi.org/10.1093/pcp/pcn036 CrossRefPubMedGoogle Scholar
  16. Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S (2014) Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet 10(5):e1004384.  https://doi.org/10.1371/journal.pgen.1004384 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17(1):32–38.  https://doi.org/10.1016/j.tplants.2011.10.007 CrossRefPubMedGoogle Scholar
  18. Hirakawa T, Hasegawa J, White CI, Matsunaga S (2017) RAD54 forms DNA repair foci in response to DNA damage in living plant cells. Plant J 90(2):372–382.  https://doi.org/10.1111/tpj.13499 CrossRefPubMedGoogle Scholar
  19. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5(18):4864–4884.  https://doi.org/10.1002/pmic.200402011 CrossRefPubMedGoogle Scholar
  20. Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18(5):172–177.  https://doi.org/10.1016/0968-0004(93)90109-Z CrossRefPubMedGoogle Scholar
  21. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22CrossRefPubMedGoogle Scholar
  22. Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13(1):295–310.  https://doi.org/10.1074/mcp.m113.028100 CrossRefPubMedGoogle Scholar
  23. Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ (2010) Genetic Analysis of Heat Tolerance at Anthesis in Rice. Crop Sci 50(5):1633–1641.  https://doi.org/10.2135/cropsci2009.09.0516 CrossRefGoogle Scholar
  24. Jorrin-Novo JV (2014) Plant proteomics methods and protocols. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics: methods and protocols. Humana Press, Totowa, pp 3–13.  https://doi.org/10.1007/978-1-62703-631-3_1
  25. Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP (2005) Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Proc Natl Acad Sci 102(43):15406CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R (2009) Plant phosphoproteomics: an update. Proteomics 9(4):964–988.  https://doi.org/10.1002/pmic.200800548 CrossRefPubMedGoogle Scholar
  27. Kuromori T, Ito T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutant of AtABCG26, an ABC transporter gene, is defective in pollen maturation. J Plant Physiol 168(16):2001–2005.  https://doi.org/10.1016/j.jplph.2011.05.014 CrossRefPubMedGoogle Scholar
  28. Laporte MM, Galagan JA, Prasch AL, Vanderveer PJ, Hanson DT, Shewmaker CK, Sharkey TD (2001) Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase. Planta 212(5):817–822.  https://doi.org/10.1007/s004250000433 CrossRefPubMedGoogle Scholar
  29. Lemoine R, Bürkle L, Barker L, Sakr S, Kühn C, Regnacq M, Gaillard C, Delrot S, Frommer WB (1999) Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco. FEBS Lett 454(3):325–330.  https://doi.org/10.1016/S0014-5793(99)00843-1 CrossRefPubMedGoogle Scholar
  30. Li WQ, Zhang XQ, Xia C, Deng Y, Ye D (2010) Male gametophyte defective 1, encoding the FAd subunit of mitochondrial F1F0-ATP synthase, is essential for pollen formation in Arabidopsis thaliana. Plant Cell Physiol 51(6):923–935.  https://doi.org/10.1093/pcp/pcq066 CrossRefPubMedGoogle Scholar
  31. Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S (2015) iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteom 126:68–81.  https://doi.org/10.1016/j.jprot.2015.05.031 CrossRefGoogle Scholar
  32. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56(1):393–434.  https://doi.org/10.1146/annurev.arplant.55.031903.141717 CrossRefPubMedGoogle Scholar
  33. Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268.  https://doi.org/10.1016/S0167-7799(02)01944-3 CrossRefPubMedGoogle Scholar
  34. Mascarenhas JP (1990) Gene activity during pollen development. Ann Rev Plant Physiol Mol Biol 41:317–338CrossRefGoogle Scholar
  35. Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148.  https://doi.org/10.1016/S0074-7696(02)15007-8 CrossRefPubMedGoogle Scholar
  36. Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J 72(1):89–101.  https://doi.org/10.1111/j.1365-313X.2012.05061.x CrossRefPubMedGoogle Scholar
  37. Mei S, Fei W, Zhou S (2011) Gene ontology based transfer learning for protein subcellular localization. BMC Bioinform 12(1):44.  https://doi.org/10.1186/1471-2105-12-44 CrossRefGoogle Scholar
  38. Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cell Mol Biol 268:1–37.  https://doi.org/10.1016/S1937-6448(08)00801-0 CrossRefPubMedGoogle Scholar
  39. Muñoz-Bertomeu J, Cascales-Miñana B, Irles-Segura A, Mateu I, Nunes-Nesi A, Fernie AR, Segura J, Ros R (2010) The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol 152(4):1830CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC (2014) Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71(2):205–228.  https://doi.org/10.1007/s00018-013-1333-1 CrossRefPubMedGoogle Scholar
  41. Ozlu N, Akten B, Timm W, Haseley N, Steen H, Steen JA (2010) Phosphoproteomics. Wiley interdisciplinary reviews systems biology and medicine 2(3):255–276.  https://doi.org/10.1002/wsbm.41 CrossRefPubMedGoogle Scholar
  42. Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228(1):73.  https://doi.org/10.1007/s00709-006-0169-z CrossRefPubMedGoogle Scholar
  43. Palancade B, Bensaude O (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 270(19):3859–3870.  https://doi.org/10.1046/j.1432-1033.2003.03794.x CrossRefPubMedGoogle Scholar
  44. Park JY, Canam T, Kang KY, Ellis DD, Mansfield SD (2008) Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res 17(2):181–192.  https://doi.org/10.1007/s11248-007-9090-2 CrossRefPubMedGoogle Scholar
  45. Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54(1):138–154.  https://doi.org/10.1093/pcp/pcs162 CrossRefPubMedGoogle Scholar
  46. Quévillon HM, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, Deutzmann R, Simard MJ, Meister G (2017) Phosphorylation of argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing. EMBO J.  https://doi.org/10.15252/embj.201696386 Google Scholar
  47. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92.  https://doi.org/10.1016/j.pmatsci.2015.11.001 CrossRefGoogle Scholar
  48. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jäättelä M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839.  https://doi.org/10.1038/ncb0901-839 CrossRefPubMedGoogle Scholar
  49. Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23(9):3533CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sarhadi E, Bazargani MM, Sajise AG, Abdolahi S, Vispo NA, Arceta M, Nejad GM, Singh RK, Salekdeh GH (2012) Proteomic analysis of rice anthers under salt stress. Plant Physiol Biochem 58:280–287.  https://doi.org/10.1016/j.plaphy.2012.07.013 CrossRefPubMedGoogle Scholar
  51. Sheoran IS, Olson DJH, Ross ARS, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5(14):3752–3764.  https://doi.org/10.1002/pmic.200401209 CrossRefPubMedGoogle Scholar
  52. Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteom 71(6):624–636.  https://doi.org/10.1016/j.jprot.2008.10.006 CrossRefGoogle Scholar
  53. Shin SB, Golovkin M, Reddy ASN (2014) A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep 4:5263.  https://doi.org/10.1038/srep05263 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shumyantseva VV, Suprun EV, Bulko TV, Archakov AI (2014) Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectr 61:131–139.  https://doi.org/10.1016/j.bios.2014.05.001 CrossRefGoogle Scholar
  55. Silva-Sanchez C, Li H, Chen S (2015) Recent advances and challenges in plant phosphoproteomics. Proteomics 15(5–6):1127–1141.  https://doi.org/10.1002/pmic.201400410 CrossRefPubMedGoogle Scholar
  56. Sjogren CA, Bolaris SC, Larsen PB (2015) Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. Plant Cell 27(9):2501CrossRefPubMedPubMedCentralGoogle Scholar
  57. Song L, Liu Z, Tong J, Xiao L, Ma H, Zhang H (2015) Comparative proteomics analysis reveals the mechanism of fertility alternation of thermosensitive genic male sterile rice lines under low temperature inducement. Proteomics 15(11):1884–1905.  https://doi.org/10.1002/pmic.201400103 CrossRefPubMedGoogle Scholar
  58. Thingholm TE, Jorgensen TJD, Jensen ON, Larsen (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929CrossRefPubMedGoogle Scholar
  59. Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J 17(2):191–201.  https://doi.org/10.1046/j.1365-313x.1999.00372.x CrossRefPubMedGoogle Scholar
  60. van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26(6):2367–2389CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang K, Zhao Y, Li M, Gao F, M-k Yang, Wang X, Li S, Yang P (2014) Analysis of phosphoproteome in rice pistil. Proteomics 14(20):2319–2334.  https://doi.org/10.1002/pmic.201400004 CrossRefPubMedGoogle Scholar
  62. Waterworth WM, Drury GE, Bray CM, West CE (2011) Repairing breaks in the plant genome: the importance of keeping it together. New Phytol 192(4):805–822.  https://doi.org/10.1111/j.1469-8137.2011.03926.x CrossRefPubMedGoogle Scholar
  63. Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci 5(7):283–290.  https://doi.org/10.1016/S1360-1385(00)01681-2 CrossRefPubMedGoogle Scholar
  64. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Meth 6(5):359–362. http://www.nature.com/nmeth/journal/v6/n5/suppinfo/nmeth.1322_S1.html
  65. Xie HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26(5):2007–2023.  https://doi.org/10.1105/tpc.114.125427 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang CW, González-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, Donnell E, Jones JDG, Sadanandom A (2006) The E3 ubiquitin ligase activity of Arabidopsis; plant U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4):1084CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yao SG, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49(5):853–857.  https://doi.org/10.1093/pcp/pcn050 CrossRefPubMedGoogle Scholar
  68. Ye J (2015) Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J 84(3):527–544.  https://doi.org/10.1111/tpj.13019 CrossRefPubMedGoogle Scholar
  69. Ye J, Zhang Z, Long H, Zhang Z, Hong Y, Zhang X, You C, Liang W, Ma H, Lu P (2015) Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J 84(3):527–544.  https://doi.org/10.1111/tpj.13019 CrossRefPubMedGoogle Scholar
  70. Ye J, Zhang Z, You C, Zhang X, Lu J, Ma H (2016) Abundant protein phosphorylation potentially regulates Arabidopsis anther development. J Exp Bot 67(17):4993–5008.  https://doi.org/10.1093/jxb/erw293 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yin LL, Xue HW (2012) The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24(3):1049CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yoshiyama K, Sakaguchi K, Kimura S (2013) DNA damage response in plants: conserved and variable response compared to animals. Biology 2(4):1338CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9(4):e1003422.  https://doi.org/10.1371/journal.pgen.1003422 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22(3):672CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteom 109:290–308.  https://doi.org/10.1016/j.jprot.2014.07.010 CrossRefGoogle Scholar
  76. Zhao Z, Assmann SM (2011) The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot 62(14):5179–5189.  https://doi.org/10.1093/jxb/err223 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhou RY, Zhang X, Zhang JQ, Wei HX (2008) A breakthrough in kenaf cytoplasmic male sterile lines breeding and heterosis utilization. Sci Agric Sin 41(1):314 (in Chinese) Google Scholar
  78. Zhu LM, Ai SY, Zhou RY (2007) A cytological study on microsporogenesis of cytoplasmic male sterile lines in kenaf (Hibiscus cannabinus L.). Acta Agronom Sinica 33(6):999–1003 (in Chinse)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Plant Genetics and Breeding, College of AgricultureGuangxi UniversityNanningChina
  2. 2.College of Life Science and TechnologyGuangxi UniversityNanningChina

Personalised recommendations