Amino Acids

, Volume 50, Issue 3–4, pp 453–468 | Cite as

Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides

  • N. Dong
  • X. R. Li
  • X. Y. Xu
  • Y. F. Lv
  • Z. Y. Li
  • A. S. Shan
  • J. L. Wang
Original Article


Facing rising global antibiotics resistance, physical membrane-damaging antimicrobial peptides (AMPs) represent promising antimicrobial agents. Various strategies to design effective hybrid peptides offer many advantages in overcoming the adverse effects of natural AMPs. In this study, hybrid peptides from different species were investigated, and three hybrid antimicrobial peptides, LI, LN, and LC, were designed by combining the typical fragment of human cathelicidin-derived LL37 with either indolicidin, pig nematode cecropin P1 (CP-1) or rat neutrophil peptide-1 (NP-1). In an aqueous solution, all hybrid peptides had an unordered conformation. In simulated membrane conditions, the hybrid peptide LI displayed more β-turn and β-hairpin structures, whereas LN and LC folded into α-helix structures. The three interspecific hybrid peptides LI, LN, and LC exhibited different levels of antimicrobial activity against Gram-positive and Gram-negative bacteria. LI demonstrated the highest antimicrobial activity and cell selectivity. The results of the swimming motility indicated that LI repressed bacterial motility in a concentration-dependent method. Endotoxin binding assay demonstrated that hybrid peptide LI conserved the binding ability to LPS (polyanionic lipopolysaccharides) of its parental peptides. Fluorescence assays, flow cytometry, and SEM further revealed that hybrid peptide LI acted through different bacteriostatic mechanisms than LL37 and indolicidin and that LI killed bacterial cells via membrane damage. In summary, this study demonstrated that hybrid peptide LI produced by interspecific hybrid synthesis possessed strong cell selectivity and is a promising therapeutic candidate for drug-resistant bacteria infection.


Interspecific hybrid peptides Cell selectivity Membrane Bactericidal mechanism Hemolysis 



Antimicrobial peptide


Minimum inhibitory concentration


Minimum hemolytic concentration


Phosphate-buffered saline




Bovine serum albumin


Circular dichroism




Sodium dodecyl sulfate


Outer membrane




Scanning electron microscopy




Propidium iodide


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Ahmad I, Perkins WR, Lupan DM et al (1995) Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. BBA Biomembr 1237:109–114. CrossRefGoogle Scholar
  2. Baek MH, Kamiya M, Kushibiki T et al (2016) Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. J Pept Sci 22:214–221. CrossRefPubMedGoogle Scholar
  3. Berlose JP, Convert O, Derossi D et al (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. Eur J Biochem 242:372–386. CrossRefPubMedGoogle Scholar
  4. Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225PubMedPubMedCentralGoogle Scholar
  5. Buck M (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31:297–355. CrossRefPubMedGoogle Scholar
  6. Chou S, Shao C, Wang J et al (2016) Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater 30:78–93. CrossRefPubMedGoogle Scholar
  7. Cornette JL, Cease KB, Margalit H et al (1987) Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol 195:659–685. CrossRefPubMedGoogle Scholar
  8. Currie SM, Gwyer Findlay E, McFarlane AJ et al (2016) Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 196:2699–2710. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dashper SG, O’Brien-Simpson NM, Cross KJ et al (2005) Divalent metal cations increase the activity of the antimicrobial peptide kappacin. Antimicrob Agents Chemother 49:2322–2328. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dong N, Ma Q, Shan A et al (2012) Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich β-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother 56:2994–3003. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dong N, Zhu X, Chou S et al (2014) Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 35:8028–8039. CrossRefPubMedGoogle Scholar
  12. Eisenhauer PB, Harwig SSL, Szklarek D et al (1989) Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun 57:2021–2027PubMedPubMedCentralGoogle Scholar
  13. Ejim L, Farha MA, Falconer SB et al (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350. CrossRefPubMedGoogle Scholar
  14. Fox MA, Thwaite JE, Ulaeto DO et al (2012) Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33:197–205. CrossRefPubMedGoogle Scholar
  15. Hagar JA, Powell DA, Aachoui Y et al (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science (80-) 341:1250–1253. CrossRefGoogle Scholar
  16. Haisma EM, De Breij A, Chan H et al (2014) LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother 58:4411–4419. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA 104:20805–20810. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Imamura Y, Higashiyama Y, Tomono K et al (2005) Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49:1377–1380. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Javadpour MM, Juban MM, Lo WCJ et al (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113. CrossRefPubMedGoogle Scholar
  20. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jing W, Svendsen JS, Vogel HJ (2006) Comparison of NMR structures and model-membrane interactions of 15-residue antimicrobial peptides derived from bovine lactoferricin. Biochem Cell Biol 84:312–326. CrossRefPubMedGoogle Scholar
  22. Kawashima H, Katayama M, Yoshida R et al (2016) A dimer model of human calcitonin13–32 forms an α-helical structure and robustly aggregates in 50% aqueous 2,2,2-trifluoroethanol solution. J Pept Sci 480–484.
  23. Le C-F, Yusof MYM, Hassan H et al (2015) In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin. Sci Rep 5:9761. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li J, Koh JJ, Liu S et al (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11:73PubMedPubMedCentralGoogle Scholar
  25. Liu YF, Xia X, Xu L, Wang YZ (2013) Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials 34:237–250. CrossRefPubMedGoogle Scholar
  26. Lv Y, Wang J, Gao H et al (2014) Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS ONE 9:1–12. Google Scholar
  27. Lyu Y, Yang X, Goswami S et al (2017) Amphiphilic tobramycin-lysine conjugates sensitize multidrug resistant Gram-negative bacteria to rifampicin and minocycline. J Med Chem 60:3684–3702. CrossRefPubMedGoogle Scholar
  28. Ma Z, Wei D, Yan P et al (2015) Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials 52:517–530. CrossRefPubMedGoogle Scholar
  29. Ma L, Wang Y, Wang M et al (2016) Effective antimicrobial activity of Cbf-14, derived from a cathelin-like domain, against penicillin-resistant bacteria. Biomaterials 87:32–45. CrossRefPubMedGoogle Scholar
  30. Malanovic N, Lohner K (2016) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta Biomembr 1858:936–946. CrossRefGoogle Scholar
  31. Memariani H, Shahbazzadeh D, Ranjbar R et al (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 89:327–338. CrossRefPubMedGoogle Scholar
  32. Mikut R, Ruden S, Reischl M et al (2016) Improving short antimicrobial peptides despite elusive rules for activity. Biochim Biophys Acta Biomembr 1858:1024–1033. CrossRefGoogle Scholar
  33. Mura M, Wang J, Zhou Y et al (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45:195–207CrossRefPubMedPubMedCentralGoogle Scholar
  34. Neelabh Singh K, Rani J (2016) Sequential and structural aspects of antifungal peptides from animals, bacteria and fungi based on bioinformatics tools. Probiotics Antimicrob Proteins 8:85–101CrossRefPubMedGoogle Scholar
  35. Nguyen VS, Tan KW, Ramesh K et al (2017) Structural basis for the bacterial membrane insertion of dermcidin peptide, DCD-1L. Sci Rep 7:13923. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Niyonsaba F, Iwabuchi K, Someya A et al (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oren Z, Lerman JC, Gudmundsson GH et al (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341:501–513CrossRefPubMedPubMedCentralGoogle Scholar
  38. Park IY, Cho JH, Kim KS et al (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901. CrossRefPubMedGoogle Scholar
  39. Park KH, Nan YH, Park Y et al (2009) Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Biochim Biophys Acta Biomembr 1788:1193–1203. CrossRefGoogle Scholar
  40. Paul K, Erhardt M, Hirano T et al (2008) Energy source of flagellar type III secretion. Nature 451:489–492. CrossRefPubMedGoogle Scholar
  41. Paulmann M, Arnold T, Linke D et al (2012) Structure-activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. J Biol Chem 287:8434–8443. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Paulsen VS, Blencke HM, Benincasa M et al (2013) Structure-activity relationships of the antimicrobial peptide arasin 1—and mode of action studies of the N-terminal, proline-rich region. PLoS ONE. Google Scholar
  43. Rokitskaya TI, Kolodkin NI, Kotova EA, Antonenko YN (2011) Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochim Biophys Acta Biomembr 1808:91–97. CrossRefGoogle Scholar
  44. Saugar JM, Rodriguez-Hernandez MJ, de la Torre BG et al (2006) Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother 50:1251–1256. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Selsted ME, Novotny MJ, Morris WL et al (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295PubMedGoogle Scholar
  46. Shang D, Zhang Q, Dong W et al (2016) The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomater 33:153–165. CrossRefPubMedGoogle Scholar
  47. Shin A, Lee E, Jeon D et al (2015) Peptoid-substituted hybrid antimicrobial peptide derived from papiliocin and magainin 2 with enhanced bacterial selectivity and anti-inflammatory activity. Biochemistry 54:3921–3931. CrossRefPubMedGoogle Scholar
  48. Tsai PW, Cheng YL, Hsieh WP, Lan CY (2014) Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 52:581–589. CrossRefPubMedGoogle Scholar
  49. Uppu DSSM, Haldar J (2016) Lipopolysaccharide neutralization by cationic-amphiphilic polymers through pseudoaggregate formation. Biomacromolecules 17:862–873. CrossRefPubMedGoogle Scholar
  50. Wang P, Bang JK, Kim HJ et al (2009) Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 30:2144–2149. CrossRefPubMedGoogle Scholar
  51. Wei X-B, Wu R-J, Si D-Y et al (2016) Novel hybrid peptide cecropin A (1–8)-LL37 (17–30) with potential antibacterial activity. Int J Mol Sci 17:983. CrossRefPubMedCentralGoogle Scholar
  52. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature 3:842–848. Google Scholar
  53. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. CrossRefPubMedGoogle Scholar
  54. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta Biomembr 1758:1436–1449CrossRefGoogle Scholar
  55. Zhu X, Dong N, Wang Z et al (2014a) Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater 10:244–257. CrossRefPubMedGoogle Scholar
  56. Zhu X, Ma Z, Wang J et al (2014b) Importance of tryptophan in transforming an amphipathic peptide into a Pseudomonas aeruginosa-targeted antimicrobial peptide. PLoS ONE. Google Scholar
  57. Zhu X, Zhang L, Wang J et al (2015) Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater 18:155–167. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • N. Dong
    • 1
  • X. R. Li
    • 1
  • X. Y. Xu
    • 1
  • Y. F. Lv
    • 1
  • Z. Y. Li
    • 1
  • A. S. Shan
    • 1
  • J. L. Wang
    • 2
  1. 1.Laboratory of Molecular Nutrition and Immunity, Institute of Animal NutritionNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.College of Animal Science and Veterinary MedicineJinzhou Medical UniversityJinzhouPeople’s Republic of China

Personalised recommendations