Skip to main content
Log in

Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glycine, proline, and hydroxyproline (Hyp) contribute to 57% of total amino acids (AAs) in collagen, which accounts for one-third of proteins in animals. As the most abundant protein in the body, collagen is essential to maintain the normal structure and strength of connective tissue, such as bones, skin, cartilage, and blood vessels. Mammals, birds, and fish can synthesize: (1) glycine from threonine, serine, choline, and Hyp; (2) proline from arginine; and (3) Hyp from proline residues in collagen, in a cell- and tissue-specific manner. In addition, livestock (e.g., pigs, cattle, and sheep) produces proline from glutamine and glutamate in the small intestine, but this pathway is absent from birds and possibly most fish species. Results of the recent studies indicate that endogenous synthesis of glycine, proline, and Hyp is inadequate for maximal growth, collagen production, or feed efficiency in pigs, chickens, and fish. Although glycine, proline and Hyp, and gelatin can be used as feed additives in animal diets, these ingredients except for glycine are relatively expensive, which precludes their inclusion in practical rations. Alternatively, hydrolyzed feather meal (HFM), which contains 9% glycine, 5% Hyp, and 12% proline, holds great promise as a low cost but abundant dietary source of glycine, Hyp, and proline for ruminants and nonruminants. Because HFM is deficient in most AAs, future research efforts should be directed at improving the bioavailability of its AAs and the balance of AAs in HFM-supplemented diets. Finally, HFM may be used as a feed additive to prevent or ameliorate connective tissue disorders in domestic and aquatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acid

HFM:

Hydrolyzed feather meal

Hyp:

Hydroxyproline

α-KG:

α-Ketoglutarate

P5C:

Pyrroline-5-carboxylate

RER:

Rough endoplasmic reticulum

References

  • Aksnes A, Mundheim H, Toppe J, Albrektsen S (2008) The effect of dietary hydroxyproline supplementation on salmon (Salmo salar L.) fed high plant protein diets. Aquaculture 275:242–249

    Article  CAS  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  CAS  PubMed  Google Scholar 

  • Bandegan A, Kiarie E, Payne RL, Crow GH, Guenter W, Nyachoti CM (2010) Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens. Poult Sci 89:2626–2633

    Article  CAS  PubMed  Google Scholar 

  • Barbul A (2008) Proline precursors to sustain Mammalian collagen synthesis. J Nutr 138:2021S–2024S

    CAS  PubMed  Google Scholar 

  • Bella J (2016) Collagen structure: new tricks from a very old dog. Biochem J 473:1001–1025

    Article  CAS  PubMed  Google Scholar 

  • Brown WF, Adjei MB (2001) Urea and(or) feather meal supplementation for yearling steers grazing limpograss (Hemarthria altissima var. ‘Floralta’) pasture. J Anim Sci 79:3170–3176

    Article  CAS  PubMed  Google Scholar 

  • Brown WF, Pate FM (1997) Cottenseed meal or feather meal supplementation of ammoniated tropical grass hay for yearling cattle. J Anim Sci 75:1666–1673

    Article  CAS  PubMed  Google Scholar 

  • Burgeson RE, Morris NP (1987) The collagen family of proteins. In: Uitto J, Perejda AJ (eds) Connective tissue disease: molecular pathology of the extracellular matrix. Marcel Dekker Inc., New York, pp 3–28

    Google Scholar 

  • Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR, Alexander KM, Coe FL (2002) Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 61:975–987

    Article  CAS  PubMed  Google Scholar 

  • Cabel MC, Goodwin TL, Waldroup PW (1988) Feather meal as a nonspecific nitrogen source for abdominal fat reduction in broilers during the finishing period. Poult Sci 67:300–306

    Article  CAS  PubMed  Google Scholar 

  • Chow M, Boyd CD, Iruela-Arispe ML, Wrenn DS, Mecham R, Sage EH (1989) Characterization of elastin protein and mRNA from salmonid fish (Oncorhynchus kisutch). Comp Biochem Physiol B 93:835–845

    Article  CAS  PubMed  Google Scholar 

  • Chu ML, Mann K, Deutzmann R, Pribula-Conway D, Hsu-Chen CC, Bernard MP, Timpl R (1987) Characterization of three constituent chains of collagen type VI by peptide sequences and cDNA clones. Eur J Biochem 168:309–317

    Article  CAS  PubMed  Google Scholar 

  • Chyun JH, Griminger P (1984) Improvement of nitrogen retention by arginine and glycine supplementation and its relation to collagen synthesis in traumatized mature and aged rats. J Nutr 114:1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Corzo A, Fritts CA, Kidd MT, Kerr BJ (2005) Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Anim Feed Sci Technol 118:319–327

    Article  CAS  Google Scholar 

  • Dabrowski K, Zhang YF, Kwasek K, Hliwa P, Ostaszewska T (2010) Effects of protein-, peptide- and free amino acid-based diets in fish nutrition. Aquac Res 41:668–683

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Jia S, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Davidson JM (1987) Elastin: structure and biology. In: Uitto J, Perejda AJ (eds) Connective tissue disease: molecular pathology of the extracellular matrix. Marcel Dekker Inc., New York, pp 29–54

  • Debelle L, Tamburro AM (1999) Elastin: molecular description and function. Int J Biochem Cell Biol 31:261–272

    Article  CAS  PubMed  Google Scholar 

  • Devlin TM (2006) Textbook of biochemistry with clinical correlations. Wiley-Liss Press, Hoboken

    Google Scholar 

  • Divakala KC, Chiba LI, Kamalakar RB, Rodning SP, Welles EG, Cummins KA, Swann J, Cespedes F, Payne RL (2009) Amino acid supplementation of hydrolyzed feather meal diets for finisher pigs. J Anim Sci 87:1270–1281

    Article  CAS  PubMed  Google Scholar 

  • Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halper J (2014) Connective tissue disorders in domestic animals. Adv Exp Med Biol 802:231–240

    Article  CAS  PubMed  Google Scholar 

  • Hertrampf JW, Piedad-Pascual F (2000) Chapter 15: feather meal (hydrolyzed). Handbook on ingredients for aquaculture feeds. Springer, New York, pp 131–141

    Chapter  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu ZL, Dai ZL, Wang GH, Wu G (2017) Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu SD, Li XL, Rezaei R, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with L-arginine in pigs. Amino Acids 47:925–936

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Nawaratna G, Long BD, Bazer FW, Johnson GA, Brosnan JT, Wu G (2017) The hydroxyproline–glycine pathway for glycine synthesis in neonatal pigs. J Anim Sci 95(Suppl 4):45

    Article  Google Scholar 

  • Keeley FW, Labella FS (1972) Amino acid composition of elastin in the developing chick aorta. Connect Tissue Res 1:113–119

    Article  CAS  Google Scholar 

  • Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914–923

    Article  CAS  PubMed  Google Scholar 

  • Koelkebeck KW, Parsons CM, Leeper RW, Jin S, Douglas MW (1999) Early postmolt performance of laying hens fed a low-protein corn molt diet supplemented with corn gluten meal, feather meal, methionine, and lysine. Poult Sci 78:1132–1137

    Article  CAS  PubMed  Google Scholar 

  • Laporte J, Woodgate S, Davies S, Serwat AR, Gouveia A, Nates S (2007) Biotechnological process and biological value of feather meal: evaluation of a novel protein source for the partial replacement of fishmeal in aquafeeds. Aquafeed Int 10:16–23

    Google Scholar 

  • Lavieu G, Dunlop MH, Lerich A, Zheng H, Bottanelli F, Rothman JE (2014) The Golgi ribbon structure facilitates anterograde transport of large cargoes. Mol Biol Cell 25:3028–3036

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Mai KS, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53

    Article  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He G, Wang Q, Mai K, Xu W, Zhou H (2014) Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot (Scophthalmus maximus L.). Aquaculture 433:476–480

    Article  CAS  Google Scholar 

  • Liu Y, Wang X, Hou Y, Yin Y, Qiu Y, Wu G, Hu CA (2017) Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids 49:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  CAS  PubMed  Google Scholar 

  • Mandel NS, Henderson JD Jr, Hung LY, Wille DF, Wiessner JH (2004) A porcine model of calcium oxalate kidney stone disease. J Urol 171:1301–1303

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1965) Biochemistry of amino acids. Academic Press, New York

    Google Scholar 

  • Myllyharju J (2005) Intracellular post-translational modifications of collagens. Top Curr Chem 247:115–247

    Article  CAS  Google Scholar 

  • Nogueira N, Cordeiro N, Andrade C, Aires T (2012) Inclusion of low levels of blood and feathermeal in practical diets for gilthead seabream (Sparus aurata). Turk J Fish Aquat Sci 12:641–650

    Article  Google Scholar 

  • Olstad K, Ekman S, Carlson CS (2015) An update on the pathogenesis of osteochondrosis. Vet Pathol 52:785–802

    Article  CAS  PubMed  Google Scholar 

  • Ospina-Rojas IC, Murakami AE, Oliveira CAL, Guerra AFQG (2013) Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poult Sci 92:2724–2731

    Article  CAS  PubMed  Google Scholar 

  • Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30:441–463

    Article  CAS  PubMed  Google Scholar 

  • Robins SP (2007) Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35:849–852

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K (2017) Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr 105:136–143

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Asami N, Kataoka A, Sugihara F, Inoue N, Kimira Y, Wada M, Mano H (2015) Oral collagen-derived dipeptides, prolyl-hydroxyproline and hydroxyprolyl-glycine, ameliorate skin barrier dysfunction and alter gene expression profiles in the skin. Biochem Biophys Res Commun 456:626–630

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Wu ZL, Ji Y, Wu G (2016) Glycine regulates protein turnover by activating protein kinase B/mammalian target of rapamycin and by inhibiting MuRF1 and atrogin-1 gene expression in C2C12 myoblasts. J Nutr 146:2461–2467

    Article  CAS  PubMed  Google Scholar 

  • Tørud B, Håstein T (2008) Skin lesions in fish: causes and solutions. Acta Vet Scand 50(Suppl 1):S7

    Article  PubMed Central  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  Google Scholar 

  • Wang WW, Wu ZL, Lin G, Hu SD, Wang B, Dai ZL, Wu G (2014a) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small-intestinal epithelial cells. J Nutr 144:1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL, Lin G, Jia SC, Hu SD, Dahanayaka S, Wu G (2014b) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1993) Determination of proline by reversed-phase high performance liquid chromatography with automated pre-column o-phthaldialdehyde derivatization. J Chromatogr 641:168–175

    Article  CAS  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (2015) Glycine nutrition in young pigs. In: Swine nutrition and gut health international symposium, Wuhan, China, pp 38–54

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors 35:21–27

    Article  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li XL, McKnight JR, Satterfield MC, Spencer TE (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin YL (2013) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental l-arginine in animals. Amino Acids 48:1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Tian L, Jin Y, Yang H, Liang G, Liu Y (2014) Effect of glycine supplementation on growth performance, body composition and salinity stress of juvenile Pacific white shrimp, Litopenaeus vannamei fed low fishmeal diet. Aquaculture 418–419:159–164

    Article  Google Scholar 

  • Xie S, Zhou W, Tian L, Niu J, Liu Y (2016) Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 55:233–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from Agriculture and Food Research Initiative Competitive Grants (2014-67015-21770 and 2015-67015-23276) from the USDA National Institute of Food and Agriculture, and by Texas A&M AgriLife Research (H-8200). We thank our research assistants for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article reviews published studies and does not require either the approval of animal use or human consent.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50, 29–38 (2018). https://doi.org/10.1007/s00726-017-2490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2490-6

Keywords

Navigation