Recent approaches for asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes

Abstract

This review article critically discusses examples of asymmetric synthesis of tailor-made α-amino acids via homologation of Ni(II) complexes of glycine and alanine Schiff bases, reported in the literature from 2013 through the end of 2016. Where it is possible, reaction mechanism and origin of the stereochemical outcome is discussed in detail. Special attention is given to various aspects of practicality and scalability of the reported methods. Among the most noticeable developments in this area are novel designs of axially chiral ligands, application of electro- and mechano-chemical (ball-milling) conditions, and development of dynamic kinetic resolution procedures.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Scheme 7
Scheme 8
Fig. 3
Scheme 9
Scheme 10
Fig. 4
Scheme 11
Scheme 12
Scheme 13
Fig. 5
Fig. 6
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Fig. 7
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Fig. 8
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Fig. 9
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Fig. 10
Scheme 66
Scheme 67
Fig. 11

References

  1. Aceña JL, Sorochinsky AE, Soloshonok VA (2012) Recent advances in the asymmetric synthesis of α-(trifluoromethyl)-containing α-amino acids. Synthesis 2012:1591-1602

  2. Aceña JL, Sorochinsky AE, Moriwaki H, Sato T, Soloshonok VA (2013) Synthesis of fluorine-containing alpha-amino acids in enantiomerically pure form via homologation of Ni(II) complexes of glycine and alanine Schiff bases. J Fluor Chem 155:21–38

    Article  CAS  Google Scholar 

  3. Aceña JL, Sorochinsky AE, Soloshonok V (2014) Asymmetric synthesis of alpha-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 46:2047–2073. doi:10.1007/s00726-014-1764-5

    PubMed  Article  CAS  Google Scholar 

  4. Aillard B, Robertson NS, Baldwin AR, Robins S, Jamieson AG (2014) Robust asymmetric synthesis of unnatural alkenyl amino acids for conformationally constrained alpha-helix peptides. Org Biomol Chem 12:8775–8782

    CAS  PubMed  Article  Google Scholar 

  5. Basiuk VA, Gromovoy TY, Chuiko AA, Soloshonok VA, Kukhar VP (1992) A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines. Synthesis 1992:449–451

    Article  Google Scholar 

  6. Belokon YN, Zeltzer IE, Bakhmutov VI, Saporovskaya MB, Ryzhov MG, Yanovsky AI, Struchkov YT, Belikov VM (1983) Asymmetric synthesis of threonine and partial resolution and retroracemization of alpha-amino acids via copper(II) complexes of their Schiff bases with (S)-2-N-(N’-benzylprolyl)aminobenzaldehyde and (S)-2-N-(N’-benzylprolyl)aminoacetophenone. Crystal and molecular structure of a copper(II) complex of glycine Schiff base with (S)-2-N-(N’-benzylprolyl)aminoacetophenone. J Am Chem Soc 105:2010–2017

    CAS  Article  Google Scholar 

  7. Belokon YN, Bulychev AG, Vitt SV, Struchkov YT, Batsanov AS, Timofeeva TV, Tsyryapkin VA, Ryzhov MG, Lysova LA, Bakhmutov VI, Belikov VM (1985) General method of diastereo- and enantioselective synthesis of β-hydroxy-α-amino acids by condensation of aldehydes and ketones with glycine. J Am Chem Soc 107:4252–4259

    CAS  Article  Google Scholar 

  8. Belokon YN, Maleev VI, Petrosyan AA, Savel´eva TF, Ikonnikov NS, Peregudov AS, Khrustalev VN, Saghiyan AS (2002) Halosubstituted (S)-N-(2-benzoylphenyl)-1-benzylpyrolidine-2-carboxamides as new chiral auxiliaries for the asymmetric synthesis of (S)-a-amino acids. Russ Chem Bull 51:1593–1599

    CAS  Article  Google Scholar 

  9. Belyk KM, Xiang BP, Bulger PG, Leonard WR, Balsells J, Yin JJ, Chen CY (2010) Enantioselective synthesis of (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid ethyl ester (vinyl-ACCA-0Et) by asymmetric phase-transfer catalyzed cyclopropanation of (E)-N-phenylmethyleneglycine ethyl ester. Org Process Res Dev 14:692–700

    CAS  Article  Google Scholar 

  10. Bera K, Namboothiri INN (2014) Asymmetric synthesis of quaternary α-amino acids and their phosphonate analogues. Asian J Org Chem 3:1234–1260

    CAS  Article  Google Scholar 

  11. Bergagnini M et al (2014) NH-type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. Org Biomol Chem 12:1278–1291

    CAS  PubMed  Article  Google Scholar 

  12. Boibessot T, Benimelis D, Meffre P, Benfodda Z (2016) Advances in the synthesis of α-quaternary α-ethynyl α-amino acids. Amino Acids 48:2081–2101

    CAS  PubMed  Article  Google Scholar 

  13. Bravo P, Farina A, Kukhar VP, Markovsky AL, Meille SV, Soloshonok VA, Sorochinsky AE, Viani F, Zanda M, Zappala CJ (1997) Stereoselective additions of α-lithiated alkyl-p-tolylsulfoxides to N-PMP(fluoroalkyl)aldimines. An efficient approach to enantiomerically pure fluoro amino compounds. J Org Chem 62:3424–3425

    CAS  Article  Google Scholar 

  14. Bravo P, Guidetti M, Viani F, ZandaM Markovsky AL, Sorochinsky AE, Soloshonok IV, Soloshonok VA (1998) Chiral sulfoxide controlled asymmetric additions to C–N double bond. An efficient approach to stereochemically defined α-fluoroalkyl amino compounds. Tetrahedron 54:12789–12806

    CAS  Article  Google Scholar 

  15. Bravo P, Capelli S, Guidetti M, Meille SV, Viani F, Zanda M, Markovsky AL, Sorochinsky AE, Soloshonok VA (1999) Asymmetric synthesis of α-arylglycinols via additions of lithium methyl p-tolyl sulfoxide to N-(PMP)arylaldimines followed by “non oxidative” Pummerer reaction. Tetrahedron 55:3025–3040

    CAS  Article  Google Scholar 

  16. Brown JM, Homans SW, Cheng M, Chaykovsky M, Murray JH (2003) Method for obtaining dynamic and structural data pertaining to proteins and protein/ligand complexes. In: WO patent WO2003104430. Prospect Pharma, Columbia

  17. Brown JM, Homans SW, Chaykovsky M, Murray JH (2005) Side chain deuterated amino acids and methods of use. In: WO patent WO2005037853. Prospect Pharma, Columbia

  18. Cai CZ, Soloshonok VA, Hruby VJ (2001) Stereochemically defined C-substituted glutamic acids and their derivatives, part 9. Michael addition reactions between chiral Ni(II) complex of glycine and 3-(trans-enoyl)oxazolidin-2-ones. A case of electron donor–acceptor attractive interaction-controlled face diastereoselectivity. J Org Chem 66:1339–1350

    CAS  PubMed  Article  Google Scholar 

  19. Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ (2004) Biological and conformational study of β-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity. J Pept Res 63:116–131

    CAS  PubMed  Article  Google Scholar 

  20. Cativiela C, Diazdevillegas MD, Jimenez AI (1995) A Simple synthesis of (−)-(1s, 2r)-allocoronamic acid in its enantiomerically pure form. Tetrahedron Asymmetry 6:177–182

    CAS  Article  Google Scholar 

  21. Chen H, Wang J, Zhou S, Liu H (2014) Asymmetric synthesis of chiral heterocyclic amino acids via the alkylation of the Ni(II) complex of glycine and alkyl halides. J Org Chem 79:7872–7879

    CAS  PubMed  Article  Google Scholar 

  22. Chung JYL et al (2015) Evolution of a manufacturing route to omarigliptin, a long-acting DPP-4 inhibitor for the treatment of type 2 diabetes. Org Process Res Dev 19:1760–1768

    CAS  Article  Google Scholar 

  23. Cowell SM, Lee YS, Cain JP, Hruby VJ (2004) Exploring Ramachandran and chi space: conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands. Curr Med Chem 11:2785–2798

    CAS  PubMed  Article  Google Scholar 

  24. Darlak K, Kawahata N, Athamneh AS (2014) Disubstituted amino acids and methods of preparation and use thereof. In: WO patent WO2014071241. Aileron Therapeutics, Inc, Cambridge

  25. de Lange B et al (2011) Asymmetric synthesis of (S)-2-indolinecarboxylic acid by combining biocatalysis and homogeneous catalysis. Chemcatchem 3:289–292

    Article  CAS  Google Scholar 

  26. de Meijere A, Kozhushkov SI, Yufit DS, Grosse C, Kaiser M, Raev VA (2014) (2R, 1’S, 2’R)- and (2S, 1’S, 2’R)-3-[2-mono(di, tri)fluoromethylcyclopropyl]alanines and their incorporation into hormaomycin analogues. Beilstein J Org Chem 10:2844–2857

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. De BB, Thomas NR (1997) Optimisation of the retroracemisation procedure for α-amino acids using (S)-2-[(N-alkylprolyl)amino]benzophenones, recyclable chiral auxiliaries. Tetrahedron Asymmetry 8:2687–2691

    CAS  Article  Google Scholar 

  28. Ding X, Wang H, Wang J, Wang S, Lin D, Lv L, Zhou Y, Luo X, Jiang H, Aceña JL, Soloshonok VA, Liu H (2013) Synthesis of polysubstituted β-amino cyclohexane carboxylic acids via Diels–Alder reaction using Ni(II)-complex stabilized β-alanine derived dienes. Amino Acids 44:791–796

    CAS  PubMed  Article  Google Scholar 

  29. Dorizon P, Su GF, Ludvig G, Nikitina L, Paugam R, Ollivier J, Salaun J (1999) Stereoselective synthesis of highly functionalized cyclopropanes. Application to the asymmetric synthesis of (1S, 2S)-2, 3-methanoamino acids. J Org Chem 64:4712–4724

    CAS  PubMed  Article  Google Scholar 

  30. Drouet F, Noisier AFM, Harris CS, Furkert DP, Brimble MA (2014) A convenient method for the asymmetric synthesis of fluorinated α-amino acids from alcohols. Eur J Org Chem 2014:1195–1201

    CAS  Article  Google Scholar 

  31. Ellis TK, Ueki H, Yamada T, Ohfune Y, Soloshonok VA (2006) Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained α-amino acids. J Org Chem 71:8572–8578

    CAS  PubMed  Article  Google Scholar 

  32. Etxabe J, Izquierdo J, Landa A, Oiarbide M, Palomo C (2015) Catalytic enantioselective synthesis of N, Cα, Cα-trisubstituted α-amino acid derivatives using 1H-imidazol-4(5H)-ones as key templates. Angew Chem Int Ed 54:6883–6886

    CAS  Article  Google Scholar 

  33. Fan D, Jarvest RL, Lazarides L, Li Q, Li X, Liu Y, Liao L, Mordaunt JE, Ni Z, Plattner J, Qian X, Slater MJ, White VG, Zhang YK (2009) Novel cyclic boronate inhibitors of HCV replication. In: WO patent WO2009046098. Smithkline Beecham Corporation, Anacor Pharmaceuticals, Inc.

  34. Fanelli R, Jeanne-Julien L, Rene A, Martinez J, Cavelier F (2015) Stereoselective synthesis of unsaturated α-amino acids. Amino Acids 47:1107–1115

    CAS  PubMed  Article  Google Scholar 

  35. Fedorova OS, Orlovskaya VV, Maleev VI, Belokon YN, Saveleva TF, Chang CV, Chen CL, Liu RS, Krasikova RN (2014) An approach to the asymmetric synthesis of 18F-labeled analog of l-threo-3,4-dihydroxyphenylserine (6-l-threo-[18F]FDOPS)—a new radiotracer for visualization of norepinephrine transporters by positron emission tomography. Russ Chem Bull Int Ed 63:1169–1177

    CAS  Article  Google Scholar 

  36. Fenster E, Fleury M, Hughes AD (2014) Neprilysin inhibitors. In: US patent US2014256702. Theravance, Inc., South San Francisco

  37. Fox ME, Lennon IC, Farina V (2007) Catalytic asymmetric synthesis of ethyl (1R, 2S)-dehydrocoronamate. Tetrahedron Lett 48:945–948

    CAS  Article  Google Scholar 

  38. Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed 33:1699–1720

    Article  Google Scholar 

  39. Gibson SE, Guillo N, Tozer MJ (1999) Towards control of chi-space: conformationally constrained analogues of Phe, Tyr, Trp and His. Tetrahedron 55:585–615

    CAS  Article  Google Scholar 

  40. Guerlavais V (2012) Peptidomimetic macrocycles with triazole linkers. In: WO patent WO2012021875. Aileron Therapeutics, Inc, Cambridge

  41. Guerlavais V, Kawahata N (2012) Peptidomimetic macrocycles. In: WO patent WO2012021876. Aileron Therapeutics, Inc, Cambridge

  42. Guerlavais V, Skander M (2012) Peptidomimetic macrocycles with thioether linkers. In: WO patent WO2012021874. Aileron Therapeutics, Inc, Cambridge

  43. Guerlavais V, Conlee CR, Lentini SP (2013) Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles. In: US patent US20130210745. Aileron Therapeutics, Inc, Cambridge

  44. Guerlavais V, Elkin C, Nash MH, Sawyer KT, Graves JB, Feyfant E (2013) Peptidomimetic macrocycles. In: WO patent WO2013123266. Aileron Therapeutics, Inc, Cambridge

  45. Hamada T, Izawa K, Soloshonok VA (2008) Production method of optically active 2-[(N-benzylprolyl) amino] benzophenone compound. In: EP patent EP1918276. Ajinomoto Co., Inc., Tokyo

  46. Harkiss AH, Sutherland A (2016) Recent advances in the synthesis and application of fluorescent α-amino acids. Org Biomol Chem 14:8911–8921

    CAS  PubMed  Article  Google Scholar 

  47. Harris PWR, Brimble AM (2004) Neuroprotective macrocylic compounds and methods for their use. In: WO patent WO2004084809. Neuronz Limited, Neuronz Biosciences, Inc., Auckland

  48. Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430

    CAS  PubMed  Article  Google Scholar 

  49. Houck D, Acena JL, Soloshonok VA (2012) Alkylations of chiral nickel(II) complexes of glycine under phase-transfer conditions. Helv Chim Acta 95:2672–2679

    CAS  Article  Google Scholar 

  50. Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 7:945–970

    CAS  PubMed  Article  Google Scholar 

  51. Hruby VJ, Li GG, HaskellLuevano C, Shenderovich M (1997) Design of peptides, proteins, and peptidomimetics in chi space. Biopolymers 43:219–266

    CAS  PubMed  Article  Google Scholar 

  52. Hutchby M, Sedgwick AC, Bull SD (2016) Orthogonally protected Schöllkopf’s bis-lactim ethers for the asymmetric synthesis of α-amino acid derivatives and dipeptide esters. Synthesis 48:2036–2049

    CAS  Article  Google Scholar 

  53. Izawa K, Acena JL, Wang J, Soloshonok VA, Liu H (2016) Small-molecule therapeutics for ebola virus (EBOV) disease treatment. Eur J Org Chem 2016:8–16

    CAS  Article  Google Scholar 

  54. Jimenez JM, Rife J, Ortuno RM (1996) Enantioselective total syntheses of cyclopropane amino acids: natural products and protein methanologs. Tetrahedron Asymmetry 7:537–558

    CAS  Article  Google Scholar 

  55. Jörres M, Chen X, Aceña JL, Merkens C, Bolm C, Liu H, Soloshonok VA (2014) Asymmetric synthesis of α-amino acids under operationally convenient conditions. Adv Synth Catal 356:2203–2208

    Article  CAS  Google Scholar 

  56. Jörres M, Aceña JL, Soloshonok VA, Bolm C (2015) Asymmetric carbon–carbon bond formation under solventless conditions in ball mills. ChemCatChem 7:1265–1269

    Article  CAS  Google Scholar 

  57. Kandula M (2013) Compositions and methods for the treatment of autonomic and other neurological disorders. In: WO patent WO2013167998

  58. Kawamura A, Moriwaki H, Röschenthaler G-V, Kawada K, Aceña JL, Soloshonok VA (2015) Synthesis of (2S, 3S)-β-(trifluoromethyl)-α, β-diamino acid by Mannich addition of glycine Schiff base Ni(II) complexes to N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. J Fluor Chem 171:67–72

    CAS  Article  Google Scholar 

  59. Kawashima A et al (2015) Asymmetric synthesis of (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN2–SN2′ dialkylation of (R)-N-(benzyl)proline-derived glycine Schiff base Ni(II) complex. RSC Adv 5:1051–1058

    CAS  Article  Google Scholar 

  60. Kawashima A et al (2016) Advanced asymmetric synthesis of (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base. Amino Acids 48:973–986

    CAS  PubMed  Article  Google Scholar 

  61. Kim Y, Park J, Kim MJ (2011) Dynamic kinetic resolution of amines and amino acids by enzyme–metal cocatalysis. ChemCatChem 3:271–277

    CAS  Article  Google Scholar 

  62. Kukhar VP, Belokon YN, Soloshonok VA, Svistunova NY, Rozhenko AB, Kuzmina NA (1993) Asymmetric-synthesis of organoelement analogs of natural-products. 12. General-method for the asymmetric-synthesis of fluorine-containing phenylalanines and alpha-methyl(phenyl)alanines via alkylation of the chiral nickel(II) Schiff-base complexes of glycine and alanine. Synth Stuttg 1993:117–120

    Article  Google Scholar 

  63. Kukhar VP, Sorochinsky AE, Soloshonok VA (2009) Practical synthesis of fluorine-containing alpha- and beta-amino acids: recipes from Kiev. Ukr Futur Med Chem 1:793–819

    CAS  Article  Google Scholar 

  64. Larionov OV et al (2003) Productive asymmetric synthesis of all four diastereomers of 3-(trans-2-nitrocyclopropyl)alanine from glycine with (S)- or (R)-2-[(N-benzylprolyl)amino]benzophenone as a reusable chiral auxiliary. Eur J Org Chem 2003:869–877

    Article  Google Scholar 

  65. Li GG, Patel D, Hruby VJ (1994) Exploration for large-scale stereoselective synthesis of unusual amino-acids by using 4-phenyloxazolidin-2-one as a new chiral resolution reagent. J Chem Soc Perkin Trans 1:3057–3059

    Article  Google Scholar 

  66. Li T, Zhou S, Wang J, Acena JL, Soloshonok VA, Liu H (2015a) Asymmetric synthesis of (2S, 3S)-alpha-(1-oxoisoindolin-3-yl)glycines under low-basicity “kinetic” control. J Org Chem 80:11275–11280

    CAS  PubMed  Article  Google Scholar 

  67. Li T, Zhou S, Wang J, Acena JL, Soloshonok VA, Liu H (2015b) Asymmetric synthesis of alpha-(1-oxoisoindolin-3-yl)glycine: synthetic and mechanistic challenges. Chem Commun 51:1624–1626

    CAS  Article  Google Scholar 

  68. Li J, Zhou S, Wang J, Kawashima A, Moriwaki H, Soloshonok VA, Liu H (2016) Asymmetric synthesis of aromatic and heteroaromatic α-amino acids using a recyclable axially chiral ligand. Eur J Org Chem 2016:999–1006

    CAS  Article  Google Scholar 

  69. Lin S, Kumagai N, Shibasaki M (2016) Enantioselective synthesis of α, α-disubstituted α-amino acids via direct catalytic asymmetric addition of acetonitrile to α-iminoesters. Org Biomol Chem 14:9725–9730

    CAS  PubMed  Article  Google Scholar 

  70. Liu H, Jiang H, Deng G, Zhu W, Luo X, Chen K (2008) Selective catalyse two-step synthesized chirality 2-amido-3novel method of 3-diaryl group propionic acid compounds. In: CN patent CN101108810. SIMM, Chinese Academy of Sciences, Shanghai

  71. Liu Y, Kong L, Gao Y (2010) Method for preparing chiral alpha-unnatural amino acid by transition metal complex. In: CN patent CN101759601. Okeanos Tech Co., Ltd., Beijing

  72. Lou S, Cuniere N, Su BN, Hobson LA (2013) Concise asymmetric synthesis of a (1R, 2S)-1-amino-2-vinylcyclopropanecarboxylic acid-derived sulfonamide and ethyl ester. Org Biomol Chem 11:6796–6805

    CAS  PubMed  Article  Google Scholar 

  73. Ma JS (2003) Exploring Ramachandran and chi space: conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands. Chim Oggi 21:65–68

    CAS  Google Scholar 

  74. Maestro MA, Avecilla F, Sorochinsky AE, Ellis TK, Aceña JL, Soloshonok VA (2014) Chiral N(H)-tBu and N(H)-Ad NiII complexes of glycine Schiff bases: deduction of a mode of kinetic diastereoselectivity. Eur J Org Chem 2014:4309–4314

    CAS  Article  Google Scholar 

  75. Magdesieva TV et al (2014a) Electrochemically deprotonated chiral nickel(II) glycinate in stereoselective nucleophilic addition to Michael acceptors: advantages and limitations. Organometallics 33:4629–4638

    CAS  Article  Google Scholar 

  76. Magdesieva TV, Levitskiy OA, Grishin YK, Ambartsumyan AA, Paseshnichenko KA, Kolotyrkina NG, Kochetkov KA (2014b) Chiral nickel(II) binuclear complexes: targeted diastereoselective electrosynthesis. Organometallics 33:4639–4654

    CAS  Article  Google Scholar 

  77. Mei HB, Xie C, Han JL, Soloshonok VA (2016) N-tert-Butylsulfinyl-3,3,3-trifluoroacetaldimine: versatile reagent for asymmetric synthesis of trifluoromethyl-containing amines and amino acids of pharmaceutical importance. Eur J Org Chem 2016:5917–5932

    CAS  Article  Google Scholar 

  78. Metrano AJ, Miller SJ (2014) Peptide-catalyzed conversion of racemic oxazol-5(4H)-ones into enantiomerically enriched α-amino acid derivatives. J Org Chem 79:1542–1554

    CAS  PubMed  Article  Google Scholar 

  79. Metz AE, Kozlowski MC (2015) Recent advances in asymmetric catalytic methods for the formation of acyclic α, α-disubstituted α-amino acids. J Org Chem 80:1–7

    CAS  PubMed  Article  Google Scholar 

  80. Moozeh K, So SM, Chin J (2015) Catalytic stereoinversion of l-alanine to deuterated d-alanine. Angew Chem Int Ed 54:9381–9385

    CAS  Article  Google Scholar 

  81. Moreau B, Charette AB (2005) Expedient synthesis of cyclopropane alpha-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate. J Am Chem Soc 127:18014–18015

    CAS  PubMed  Article  Google Scholar 

  82. Moriwaki H, Kawshima A, Takeda R, Kawamura A (2014a) Methods for synthesizing optically active α-amino acid using chiral metal complex comprising axially chiral N-(2-acylaryl)-2-[5,7-dihydro-6H-dibenzo[c, c]azepin-6-yl]acetamide compound and amino acid. In: WO patent WO2014188783. Hamari Chemicals, Ltd., Osaka

  83. Moriwaki H, Resch D, Li HG, Ojima I, Takeda R, Acena JL, Soloshonok V (2014b) Inexpensive chemical method for preparation of enantiomerically pure phenylalanine. Amino Acids 46:945–952

    CAS  PubMed  Article  Google Scholar 

  84. Moriwaki H, Resch D, Li HG, Ojima I, Takeda R, Acena JL, Soloshonok VA (2014c) Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-(2-[N-alkyl-N-(1-phenylethyl)-amino]acetyl) amino) benzophenone; a case of configurationally stable stereogenic nitrogen. Beilstein J Org Chem 10:442–448

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. Moriwaki H, Takeda R, Kawashima A, Soloshonok VA (2014d) Axial-asymmetric N-(2-acylaryl)-2-[5, 7-dihydro-6h-dibenzo [c, e] azepine-6-yl] acetamide compound and chirality conversion method for a-amino acid using same. In: WO patent WO2014098063. Hamari Chemicals, Ltd., Osaka

  86. Morrill LC, Lebl T, Slawin AMZ, Smith AD (2012) Catalytic asymmetric α-amination of carboxylic acids using isothioureas. Chem Sci 3:2088–2093

    CAS  Article  Google Scholar 

  87. Mulzer J (2012) Comprehensive chirality, vol 2. Elsevier, Amsterdam, pp 122–162

    Google Scholar 

  88. Nash HM (2008) Triazole macrocycle systems. In: WO patent WO2008104000. Aileron Therapeutics, Inc., Cambridge

  89. Nash HM (2009) Compositions and methods for enhancing cellular transport of biomolecules. In: WO patent WO2009149214. Aileron Therapeutics, Inc., Cambridge

  90. Nash HM, Kapeller-Libermann R, Sawyer TK, Kawahata N, Guerlavais V, Iadanza M (2009) Biologically active peptidomimetic macrocycles. In: WO patent WO2009126292. Aileron Therapeutics, Inc., Cambridge

  91. Nash HM, Annis DA, Guerlavais V, Licklider L (2011) Improved peptidomimetic macrocycles. In: WO patent WO2011047215. Aileron Therapeutics, Inc., Cambridge

  92. Nash HM, Kapeller-Libermann R, Sawyer TK, Kawahata N, Guerlavais V, Iadanza M (2011) Biologically active peptidomimetic macrocycles. In: US patent US20110144303. Aileron Therapeutics, Inc., Cambridge

  93. Nian Y et al (2015) Recyclable ligands for the non-enzymatic dynamic kinetic resolution of challenging alpha-amino acids. Angew Chem 54:12918–12922

    CAS  Article  Google Scholar 

  94. Nian Y et al (2016) Purely chemical approach for preparation of d-alpha-amino acids via (S)-to-(R)-interconversion of unprotected tailor-made alpha-amino acids. J Org Chem 81:3501–3508

    CAS  PubMed  Article  Google Scholar 

  95. Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H (2016) Recent advances in substrate-controlled asymmetric induction derived from chiral pool—amino acids for natural product synthesis. Molecules. doi:10.3390/Molecules21070951

    Google Scholar 

  96. Periasamy M, Gurubrahamam R, Sanjeevakumar N, Dalai M, Alakonda L, Reddy PO, Suresh S, Satishkumar SS, Padmaja M, Reddy MN (2013) Convenient methods for the synthesis of chiral amino alcohols and amines. Chimia 67:23–29

    CAS  PubMed  Article  Google Scholar 

  97. Popkov A, Itsenko O (2014) An asymmetric approach to the synthesis of a carbon-11 labelled gliotransmitter d-serine. J Radioanal Nucl Chem 304:455–458

    Article  CAS  Google Scholar 

  98. Popkov A, Spiegeleer BD (2012) Chiral nickel(II) complexes in the preparation of 11C- and 18F-labelled enantiomerically pure α-amino acids. Dalton Trans 41:1430–1440

    CAS  PubMed  Article  Google Scholar 

  99. Popkov A, Gree A, Na´dvornı´k M, Lycˇka A (2002) Chiral nucleophilic glycine and alanine synthons: nickel(II) complexes of Schiff bases of (S)-N-(2,4,6-trimethylbenzyl)proline (2-benzoylphenyl) amide and glycine or alanine. Trans Met Chem 27:884–887

    CAS  Article  Google Scholar 

  100. Preite DM, Manriquez Mujica MJ, Correa Vargas MJ, Iturriaga Aguera MR, Casanello Toledo CP, Krause Leyton JB (2016) Method for the enantioselective synthesis of 2(S)-amino-6-boronohexanoic acid (ABH) and purification thereof. In: WO patent WO2016037298. Pontificia Universidad Catolica de Chile, Santiago

  101. Qiu W, Soloshonok VA, Cai C, Tang X, Hruby VJ (2000) Convenient, large-scale asymmetric synthesis of enantiomerically pure trans-cinnamylglycine and -α-alanine. Tetrahedron 56:2577–2582

    CAS  Article  Google Scholar 

  102. Röschenthaler GV, Kukhar VP, Kulik IB, Belik MY, Sorochinsky AE, Rusanov EB, Soloshonok VA (2012) Asymmetric synthesis of phosphonotrifluoroalanine and its derivatives using N-tert-butanesulfinyl imine derived from fluoral. Tetrahedron Lett 53:539–542

    Article  CAS  Google Scholar 

  103. Rudolf K, Eberlein W, Engel W, Pieper H, Entzeroth M, Hallermayer G, Doods H (2005) Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists. 1-[N-2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-d-tyrosyl]-l-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonist for clinical trials in acute migraine. J Med Chem 48:5921–5931

    CAS  PubMed  Article  Google Scholar 

  104. Saghyan AS, Dadayan SA, Petrosyan SG, Manasyan LL, Geolchanyan AV, Djamgaryan SM, Andreasyan SA, Maleev VI, Khrustalev VN (2006) New chiral NiII complexes of Schiff’s bases of glycine and alanine for efficient asymmetric synthesis of a-amino acids. Tetrahedron Asymmetry 17:455–467

    Article  CAS  Google Scholar 

  105. Saghyan AS, Dadayan AS, Dadayan SA, Mkrtchyan AF, Geolchanyan AV, Manasyan LL, Ajvazyan HR, Khrustalev VN, Hambardzumyan HH, Maleev VI (2010) Rapid asymmetric synthesis of amino acids via NiII complexes based on new fluorine containing chiral auxiliaries. Tetrahedron Asymmetry 21:2956–2965

    CAS  Article  Google Scholar 

  106. Saghyan AS, Simonyan HM, Petrosyan SG, Geolchanyan AV, Roviello GN, Musumeci D, Roviello V (2014a) Thiophenyl-substituted triazolyl-thione l-alanine: asymmetric synthesis, aggregation and biological properties. Amino Acids 46:2325–2332

    CAS  PubMed  Article  Google Scholar 

  107. Saghyan AS et al (2014b) Asymmetric synthesis of enantiomerically enriched alpha-amino acids containing 2-furyl- and 2-thienyl-1,2,4-triazoles in the side-chain. Z Naturforsch B 69:451–460

    CAS  Article  Google Scholar 

  108. Sato T, Izawa K, Aceña JL, Liu H, Soloshonok VA (2016) Tailor-made α-amino acids in the pharmaceutical industry: synthetic approaches to (1R, 2S)-1-amino-2-vinylcyclopropane-1-carboxylic acid (vinyl-ACCA). Eur J Org Chem 2016:2757–2774

    CAS  Article  Google Scholar 

  109. Schettini R, Nardone B, Riccardis FD, Sala GD, Izzo I (2014) Cyclopeptoids as phase-transfer catalysts for the enantioselective synthesis of α-amino acids. Eur J Org Chem 2014:7793–7797

    CAS  Article  Google Scholar 

  110. Schwieter KE, Johnston JN (2015) Enantioselective synthesis of d-α-amino amides from aliphatic aldehydes. Chem Sci 6:2590–2595

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Shibata N, Nishimine T, Shibata N, Tokunaga E, Kawada K, Kagawa T, Soloshonok Sorochinsky AE VA (2012) Organic base-catalyzed stereodivergent synthesis of (R)- and (S)-3-amino-4,4,4-trifluorobutanoic acids. Chem Commun 48:4124–4126

    CAS  Article  Google Scholar 

  112. Smith DJ, Yap GPA, Kelley JA, Schneider JP (2011) Enhanced stereoselectivity of a Cu(II) complex chiral auxiliary in the synthesis of Fmoc-l-c-carboxyglutamic acid. J Org Chem 76:1513–1520

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. So SM, Kim H, Mui L, Chin J (2012) Mimicking nature to make unnatural amino acids and chiral diamines. Eur J Org Chem 2012:229–241

    CAS  Article  Google Scholar 

  114. So SM, Moozeh K, Lough AJ, Chin J (2014) Highly stereoselective recognition and deracemization of amino acids by supramolecular self-assembly. Angew Chem Int Ed 53:829–832

    CAS  Article  Google Scholar 

  115. Soloshonok VA (2002) Highly diastereoselective michael addition reactions between nucleophilic glycine equivalents and β-substituted-α, β-unsaturated carboxylic acid derivatives a general approach to the stereochemically defined and sterically χ-constrained α-amino acids. Curr Org Chem 6:341–364

    CAS  Article  Google Scholar 

  116. Soloshonok VA, Ellis TK (2006) Design and synthesis of a new generation of ‘NH’–Ni(II) complexes of glycine schiff bases and their unprecedented C–H vs. N–H chemoselectivity in alkyl halide alkylations and michael addition reactions. Synlett 2006:533–538

    Article  CAS  Google Scholar 

  117. Soloshonok VA, Ono T (1996) The effect of substituents on the feasibility of azomethine–azomethine isomerization: new synthetic opportunities for biomimetic. Tetrahedron 52:14701–14712

    CAS  Article  Google Scholar 

  118. Soloshonok VA, Sorochinsky AE (2010) Practical methods for the synthesis of symmetrically α, α-disubstituted α-amino acids. Synthesis 2010:2319–2344

    Article  CAS  Google Scholar 

  119. Soloshonok VA, Belokon YN, Kuzmina NA, MaleevVI Svistunova NY, Solodenko VA, Kukhar VP (1992) Asymmetric synthesis of phosphorus analogues of dicarboxylic α-amino acids. J Chem Soc Perkin Trans 1:1525–1529

    Article  Google Scholar 

  120. Soloshonok VA, Kirilenko AG, Kukhar VP, Resnati G (1993) Transamination of fluorinated β-keto carboxylic esters. A biomimetic approach to β-polyfluoroalkyl-β-amino acids. Tetrahedron Lett 34:3621–3624

    CAS  Article  Google Scholar 

  121. Soloshonok VA, Kirilenko AG, Fokina NA, Galushko SV, Kukhar VP, Svedas VK, Resnati G (1994) Chemo-enzymatic approach to the synthesis of each of the four isomers of α-alkyl-β-fluoroalkyl-substituted β-amino acids. Tetrahedron Asymmetry 5:1225–1228

    CAS  Article  Google Scholar 

  122. Soloshonok VA, Avilov DV, Kukhar VP, VanMeervelt L, Mischenko N (1997a) An efficient asymmetric synthesis of (2S, 3S)-3-trifluoromethylpyroglutamic acid. Tetrahedron Lett 38:4903–4904

    CAS  Article  Google Scholar 

  123. Soloshonok VA, Avilov DV, Kukhar VP, VanMeervelt L, Mischenko N (1997b) Highly diastereoselective aza-aldol reactions of a chiral Ni(II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids. Tetrahedron Lett 38:4671–4674

    CAS  Article  Google Scholar 

  124. Soloshonok VA, Cai CZ, Hruby VJ (1999a) Asymmetric Michael addition reactions of chiral Ni(II)-complex of glycine with (N-trans-enoyl)oxazolidines: improved reactivity and stereochemical outcome. Tetrahedron Asymmetry 10:4265–4269

    CAS  Article  Google Scholar 

  125. Soloshonok VA, Cai C, Hruby VJ, Meervelt LV, Mischenko N (1999b) Stereochemically defined C-substituted glutamic acids and their derivatives. 1. An efficient asymmetric synthesis of (2S, 3S)-3-methyl- and -3-trifluoromethylpyroglutamic acids. Tetrahedron 55:12031–12044

    CAS  Article  Google Scholar 

  126. Soloshonok VA, Cai CZ, Hruby VJ (2000a) Toward design of a practical methodology for stereocontrolled synthesis of chi-constrained pyroglutamic acids and related compounds. Virtually complete control of simple diastereoselectivity in the Michael addition reactions of glycine Ni(II) complexes with N-(enoyl)oxazolidinones. Tetrahedron Lett 41:135–139

    CAS  Article  Google Scholar 

  127. Soloshonok VA, Cai CZ, Hruby VJ, Van Meervelt L, Yamazaki T (2000b) Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. J Org Chem 65:6688–6696

    CAS  PubMed  Article  Google Scholar 

  128. Soloshonok VA, Tang X, Hruby VJ (2001a) Large-scale asymmetric synthesis of novel sterically constrained 2′,6′-dimethyl- and α,2′,6′-trimethyltyrosine and -phenylalanine derivatives via alkylation of chiral equivalents of nucleophilic glycine and alanine. Tetrahedron 57:6375–6382

    CAS  Article  Google Scholar 

  129. Soloshonok VA, Tang X, HrubyV J, Meervelt LV (2001b) Asymmetric synthesis of α, β-dialkyl-α-phenylalanines via direct alkylation of a chiral alanine derivative with racemic α-alkylbenzyl bromides. A case of high enantiomer differentiation at room temperature. Org Lett 3:341–343

    CAS  PubMed  Article  Google Scholar 

  130. Soloshonok VA, Ohkura H, Sorochinsky A, Voloshin N, Markovsky A, Belik M, Yamazaki T (2002) Convenient, large-scale asymmetric synthesis of beta-aryl-substituted alpha, alpha-difluoro-beta-amino acids. Tetrahedron Lett 43:5445–5448

    CAS  Article  Google Scholar 

  131. Soloshonok VA, Cai C, Yamada T, Ueki H, Ohfune Y, Hruby VJ (2005a) Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of β-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity. J Am Chem Soc 127:15296–15303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Soloshonok VA, Ueki H, Ellis TK (2005b) New generation of nucleophilic glycine equivalents. Tetrahedron Lett 46:941–944

    Article  CAS  Google Scholar 

  133. Soloshonok VA, Ueki H, Ellis TK, Yamada T, Ohfune Y (2005c) Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of β-substituted pyroglutamic acids. Tetrahedron Lett 46:1107–1110

    CAS  Article  Google Scholar 

  134. Soloshonok VA, Ohkura H, Yasumoto MJ (2006) Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid: Part II. Enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl]butanamide. J Fluor Chem 127:930–935

    CAS  Article  Google Scholar 

  135. Soloshonok VA, Boettiger TU, Bolene SB (2008a) Asymmetric synthesis of (2S, 3S)- and (2R, 3R)-alpha, beta-dialkyl-alpha-amino acids via alkylation of chiral nickel(II) complexes of aliphatic alpha-amino acids with racemic alpha-alkylbenzyl bromides. Synth Stuttg 2008:2594–2602

    Article  CAS  Google Scholar 

  136. Soloshonok VA, Ueki H, Ellis TK (2008b) Modular approach to the design of nucleophilic glycine equivalents with tailorable physico-chemical properties. Chim Oggi 26:51–54

    CAS  Google Scholar 

  137. Soloshonok VA, Ueki H, Ellis TK (2009) New generation of modular nucleophilic glycine equivalents for the general synthesis of α-amino acids. Synlett 2009:704–715

    Article  CAS  Google Scholar 

  138. Sorochinsky AE, Soloshonok VA (2010) Asymmetric synthesis of fluorine-containing amines, amino alcohols, α- and β-amino acids mediated by chiral sulfinyl group. J Fluor Chem 131:127–139

    CAS  Article  Google Scholar 

  139. Sorochinsky AE, Acena JL, Moriwaki H, Sato T, Soloshonok V (2013a) Asymmetric synthesis of alpha-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: Aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of alpha-amino acids. Amino Acids 45:1017–1033

    CAS  PubMed  Article  Google Scholar 

  140. Sorochinsky AE, Acena JL, Moriwaki H, Sato T, Soloshonok VA (2013b) Asymmetric synthesis of alpha-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: Alkyl halide alkylations. Amino Acids 45:691–718

    CAS  PubMed  Article  Google Scholar 

  141. Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H (2014) Direct targeting of Rab-GTPase-effector interactions. Angew Chem 53:2498–2503

    CAS  Article  Google Scholar 

  142. Sun G, Wei M, Zhang S, Chen Z, Cai L, Gao S, Guo Z, Li D, Li X, Liu Y, Wang Z (2015) Preparation method of chiral amino acid. In: CN patent CN104592309. HEC Pharma Co., Ltd, Dongguan

  143. Sun G, Wei M, Luo Z, Liu Y, Chen Z, Wang Z (2016a) An alternative scalable process for the synthesis of the key intermediate of omarigliptin. Org Process Res Dev 20:2074–2079

    CAS  Article  Google Scholar 

  144. Sun G, Zhou H, Wang Z, Zhang S (2016) Preparation method for alpha-amino acid. In: CN patent CN105384660. HEC Pharma Co., Ltd, Dongguan

  145. Takashima H (2008) Process for production of bicyclic proline compound. In: WO patent WO2008090819. Ajinomoto Co., Inc., Tokyo

  146. Takeda R, Kawamura A, Kawashima A, Moriwaki H, Sato T, Acena JL, Soloshonok VA (2014a) Design and synthesis of (S)- and (R)-alpha-(phenyl)-ethylamine-derived NH-type ligands and their application for the chemical resolution of alpha-amino acids. Org Biomol Chem 12:6239–6249

    CAS  PubMed  Article  Google Scholar 

  147. Takeda R et al (2014b) Chemical dynamic kinetic resolution and S/R interconversion of unprotected alpha-amino acids. Angew Chem 53:12214–12217

    CAS  Article  Google Scholar 

  148. Tang X, Soloshonok VA, Hruby VJ (2000) Convenient, asymmetric synthesis of enantiomerically pure 2′, 6′-dimethyltyrosine (DMT) via alkylation of chiral equivalent of nucleophilic glycine. Tetrahedron Asymmetry 11:2917–2925

    CAS  Article  Google Scholar 

  149. Tang WJ, Wei XD, Yee NK, Patel N, Lee H, Savoie J, Senanayake CH (2011) A practical asymmetric synthesis of isopropyl (1R, 2S)-dehydrocoronamate. Org Process Res Dev 15:1207–1211

    CAS  Article  Google Scholar 

  150. Turcheniuk KV, Poliashko KO, Kukhar VP, Rozhenko AB, Soloshonok VA, Sorochinsky AE (2012) Efficient asymmetric synthesis of trifluoromethylated β-aminophosphonates and their incorporation into dipeptides. Chem Commun 48:11519–11521

    CAS  Article  Google Scholar 

  151. Ueki H, Ellis TK, Martin CH, Bolene SB, Boettiger TU, Soloshonok VA (2003a) Improved synthesis of proline-derived Ni(II) complexes of glycine: versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of α-amino acids. J Org Chem 68:7104–7107

    CAS  PubMed  Article  Google Scholar 

  152. Ueki H, Ellis TK, Martin CH, Soloshonok VA (2003b) Efficient large-scale synthesis of picolinic acid-derived nickel(II) complexes of glycine. Eur J Org Chem 2003:1954–1957

    Article  CAS  Google Scholar 

  153. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:292–296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. Vogt H, Brase S (2007) Recent approaches towards the asymmetric synthesis of α, α-disubstituted α-amino acids. Org Biomol Chem 5:406–430

    CAS  PubMed  Article  Google Scholar 

  155. Walensky LD, Bird G (2010) Structured viral peptide compositions and methods of use. In: WO patent WO2010148335. Dana Farber Cancer Institute, Inc., Boston

  156. Walensky LD, Bird G (2012) Stabilized insulinotropic peptides and methods of use. In: WO patent WO2012006598. Dana Farber Cancer Institute, Inc., Boston

  157. Wang J, Lin D, Zhou S, Soloshonok VA, Liu H (2011a) Asymmetric synthesis of sterically and electronically demanding linear ω-trifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine. J Org Chem 6:684–687

    Article  CAS  Google Scholar 

  158. Wang J, Zhang L, Jiang H, Chen K, Liu H (2011b) Application of nickel(II) complexes to the efficient synthesis of α- or β-amino acids. Chimia 65:919–924

    CAS  PubMed  Article  Google Scholar 

  159. Wang J et al (2013) Synthesis of bis-alpha, alpha’-amino acids through diastereoselective bis-alkylations of chiral Ni(II)-complexes of glycine. Org Biomol Chem 11:4508–4515

    CAS  PubMed  Article  Google Scholar 

  160. Wang J et al (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506

    CAS  PubMed  Article  Google Scholar 

  161. Wang S et al (2015) Chemical dynamic thermodynamic resolution and S/R interconversion of unprotected unnatural tailor-made alpha-amino acids. J Org Chem 80:9817–9830

    CAS  PubMed  Article  Google Scholar 

  162. Wangweerawong A, Hummel JR, Bergman RG, Ellman JA (2016) Preparation of enantiomerically pure perfluorobutanesulfinamide and its application to the asymmetric synthesis of α-amino acids. J Org Chem 81:1547–1557

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Xu F, Liu Y, Zhang P, Gao Y (2009) Method for preparing alpha-methyl-alpha, alpha-disubstituted-alpha-aminophenol and derivatives thereof. In: CN101565390. Okeanos Tech Co., Ltd., Beijing

  164. Xu F et al (2014) Asymmetric synthesis of highly functionalized tetrahydropyran DPP-4 inhibitor. Org Lett 16:5422–5425

    CAS  PubMed  Article  Google Scholar 

  165. Yamada T, Okada T, Sakaguchi K, Ohfune Y, Ueki H, Soloshonok VA (2006) Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogues of thalidomide. Org Lett 8:5625–5628

    CAS  PubMed  Article  Google Scholar 

  166. Yu S, Lv H, Xu S, Ma S, Liu Y, Li Y, Qu J (2015) A novel asymmetric synthesis of (+)-deoxytylophorinine. Synthesis 47:1399–1404

    Article  CAS  Google Scholar 

  167. Zhang P, Liu Y, Wang T, Gao Y (2010) Preparation method of chiral alpha-non-natural amino acid. In: CN patent CN101817773. Okeanos Tech Co., Ltd., Beijing

  168. Zhang Q, Shi X, Jiang Y, Li Z (2014) Influence of α-methylation in constructing stapled peptides with olefin metathesis. Tetrahedron 70:7621–7626

    CAS  Article  Google Scholar 

  169. Zhang F, Sun H, Song Z, Zhou S, Wen X, Xu QL, Sun H (2015) Stereoselective synthesis of arylglycine derivatives via palladium-catalyzed alpha-arylation of a chiral nickel(II) glycinate. J Org Chem 80:4459–4464

    CAS  PubMed  Article  Google Scholar 

  170. Zhang H, Yang B, Yang Z, Lu H, Li G (2016) Asymmetric synthesis of chiral alpha-methyl-alpha, beta-diamino acid derivatives via group-assisted purification chemistry using N-phosphonyl imines and a Ni(II)-complexed alanine Schiff base. J Org Chem 81:7654–7661

    CAS  PubMed  Article  Google Scholar 

  171. Zhou J, Cao F, Wang Y, Li Z, Huang R, Zhang F, Yang Y, Zhu Y, Wei P (2009) Method for preparing l-theanine by chemical method. In: CN patent CN101717347. Nanjing Tech University, Nanjing

  172. Zhou R, Guo L, Peng C, He G, Ouyang L, Huang W (2014) Diastereoselective three-component reactions of chiral nickel(II) glycinate for convenient synthesis of novel alpha-amino-beta-substituted-gamma, gamma-disubstituted butyric acids. Molecules 19:826–845

    PubMed  Article  CAS  Google Scholar 

  173. Zhou Y et al (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116:422–518

    CAS  PubMed  Article  Google Scholar 

  174. Zhu W et al (2014) Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J Fluor Chem 167:37–54

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Ikerbasque, Basque Foundation for Science, National Natural Science Foundation of China (81620108027 and 21632008), the Major Project of Chinese National Programs for Fundamental Research and Development (2015CB910304).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Vadim A. Soloshonok or Hong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Handling Editor: P. Meffre.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, X., Wang, J. et al. Recent approaches for asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes. Amino Acids 49, 1487–1520 (2017). https://doi.org/10.1007/s00726-017-2458-6

Download citation

Keywords

  • Asymmetric synthesis
  • α-Amino acids
  • Tailor-made amino acids
  • Ni(II) complexes
  • Practicality