Skip to main content
Log in

Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets

Amino Acids Aims and scope Submit manuscript

Abstract

In-feed antibiotics have been commonly used to promote the growth performance of piglets. The antibiotics can increase protein utilization, but the underlying mechanism is largely unknown. The present study investigated the effects of in-feed antibiotics on intestinal AA transporters and receptors to test the hypothesis that the alteration of circulating AA profiles may be concomitant with the change of intestinal AA transporters and receptors. Sixteen litters of piglets at day 7 started to receive creep feed with (Antibiotic) or without (Control) antibiotic. Piglets were weaned at day 23 after birth, and fed the same diets until day 42. In-feed antibiotics did not affect the BW of 23-day-old (P = 0.248), or 42-day-old piglets (P = 0.089), but increased the weight gain to feed ratio from day 23 to 42 (P = 0.020). At day 42 after birth, antibiotic treatment increased the concentrations of most AAs in serum (P < 0.05), and decreased the concentrations of most AAs in jejunal and ileal digesta. Antibiotics upregulated (P < 0.05) the mRNA expression levels for jejunal AAs transporters (CAT1, EAAC1, ASCT2, y+LAT1), peptide transporters (PepT1), and Na+–K+–ATPase (ATP1A1), and ileal AA transporters (ASCT2, y+LAT1, b0,+AT, and B0AT1), and ATP1A1. The antibiotics also upregulated the mRNA expression of jejunal AAs receptors T1R3 and CaSR, and ileal T1R3. Protein expression levels for jejunal AA transporters (EAAC1, b0,+AT, and ASCT2) and PepT1 were also upregulated. Correlation analysis revealed that the alterations of AA profiles in serum after the in-feed antibiotics were correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. In conclusion, the in-feed antibiotics increased serum level of most AAs and decreased most AAs in the small intestine. These changes correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. The findings provide further insights into the mechanism of in-feed antibiotics, which may provide new framework for designing alternatives to antibiotics in animal feed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AOAC (2007) Official methods of analysis, 18th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Bauch C, Verrey F (2002) Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Am J Physiol Renal Physiol 283(1):181–189

    Article  Google Scholar 

  • Bergen WG (2015) Small-intestinal or colonic microbiota as a potential amino acid source in animals. Amino Acids 47(2):251–258

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139(5):821–825

    Article  CAS  PubMed  Google Scholar 

  • Breen DM, Rasmussen BA, Cote CD, Jackson VM, Lam TK (2013) Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes 62(9):3005–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286

    Article  PubMed  Google Scholar 

  • Bröer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Bröer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 279(23):24467–24476

    Article  PubMed  Google Scholar 

  • Choi J, Kim J, Ingale S, Kim K, Shinde P, Kwon I, Chae B (2011) Effec of potential multimicrobe probiotic product processed by high drying temperature and antibiotic on performance of weanling pigs. J Anim Sci 89(6):1795–1804

    Article  CAS  PubMed  Google Scholar 

  • Conigrave AD, Quinn SJ, Brown EM (2000) l-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci 97(9):4814–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell GL (2002) Why and how antibiotics are used in swine production. Animal Biotechnol 13(13):7–27

    Article  Google Scholar 

  • Dai ZL, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Aids 39(5):1201–1215

    Article  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu W-Y (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16(1):1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42(5):1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu Z, Jia S, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o -phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 964:116–127

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu Z, Hang S, Zhu W, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21(5):389–409

    Article  PubMed  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  CAS  PubMed  Google Scholar 

  • Davila A-M, Blachier F, Gotteland M, Andriamihaja M, Benetti P-H, Sanz Y, Tomé D (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68(1):95–107

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Yin J, Wu M, Liao P, Deng D, Liu G, Wen Q, Wang Y, Qiu W, Liu Y (2014) Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS One 9(11):e112357

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhou X, Wu F, Yao K, Kong X, Li T, Blachier F, Yin Y (2014) Both dietary supplementation with monosodium l-glutamate and fat modify circulating and tissue amino acid pools in growing pigs, but with little interactive effect. PLoS One 9(1):e84533

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller M (2012) Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Brit J Nutr 108(S2):238–246

    Article  Google Scholar 

  • Gilbert ER, Li H, Emmerson DA, Webb KE, Wong EA (2008) Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J Nutr 138(2):262–271

    CAS  PubMed  Google Scholar 

  • He LQ, Niu H, Li H, Xu ZQ, Yao K, Li TJ, Yin YL (2016) Effects of dietary l-lysine supplementation on lysine transport by the piglet small intestine in vitro. J Animal Sci 94:106–110

    Article  CAS  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  CAS  PubMed  Google Scholar 

  • Kong XF, Ji YJ, Li HW, Zhu Q, Blachier F, Geng MM, Chen W, Yin YL (2016) Colonic luminal microbiota and bacterial metabolite composition in pregnant Huanjiang mini-pigs: effects of food composition at different times of pregnancy. Sci Rep 6:37224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16(1):99–119

    Article  CAS  PubMed  Google Scholar 

  • Li F, Duan Y, Li Y, Tang Y, Geng M, Oladele OA, Kim SW, Yin Y (2015) Effects of dietary n−6:n−3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Brit J Nutr 113(5):739–748

    Article  CAS  PubMed  Google Scholar 

  • Lindemann M, Cornelius S, El Kandelgy S, Moser R, Pettigrew J (1986) Effect of age, weaning and diet on digestive enzyme levels in the piglet. J Animal Sci 62(5):1298–1307

    Article  CAS  Google Scholar 

  • Liu JH, Bian GR, Zhu WY, Mao SY (2015) High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of toll-like receptor genes in goats. Front Microbiol 6:167

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Kong X, Li F, Tan B, Li Y, Duan Y, Yin Y, He J, Hu C, Blachier F, Wu G (2016) Co-dependence of genotype and dietary protein intake to affect expression on amino acid/peptide transporters in porcine skeletal muscle. Amino Acids 48(1):75–90

    Article  CAS  PubMed  Google Scholar 

  • Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB (2014) Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 8(8):1566–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace O, Marshall F (2013) Digestive physiology of the pig symposium: gut chemosensing and the regulation of nutrient absorption and energy supply. J Animal Sci 91(5):1932–1945

    Article  CAS  Google Scholar 

  • Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60

    Article  CAS  PubMed  Google Scholar 

  • Miles RD, Butcher GD, Henry PR, Littell RC (2006) Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult Sci 85(3):476–485

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Yang Y, Yu K, Yu M, Zhang C, Su Y, Zhu W (2017) Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids 49(4):771–781

    Article  CAS  PubMed  Google Scholar 

  • Munck BG, Munck LK (1999) Effects of pH changes on systems ASC and B in rabbit ileum. Am J Physiol Gastrointest Liver Physiol 276(1):G173–G184

    CAS  Google Scholar 

  • Neis EPJG, Dejong CHC, Rensen SS (2015) The role of microbial amino acid metabolism in host metabolism. Nutrients 7(4):2930–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen CA, Akiba Y, Kaunitz JD (2012) Recent advances in gut nutrient chemosensing. Curr Med Chem 19(1):28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC (2012) Nutrient requirements of swine, 11th edn. National Academy Press, Washington, DC

    Google Scholar 

  • Palacín M, Fernaández E, Chillarón J, Zorzano A (2001) The amino acid transport system bo,+ and cystinuria. Mol Membr Biol 18(1):21–26

    Article  PubMed  Google Scholar 

  • Pluske JR, Thompson MJ, Atwood CS, Bird PH, Williams IH, Hartmann PE (1996) Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. Brit J Nutr 76(3):409–422

    Article  CAS  PubMed  Google Scholar 

  • Poncet N, Taylor PM (2013) The role of amino acid transporters in nutrition. Curr Opin Clin Nutr Metab Care 16(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Portune KJ, Beaumont M, Davila A-M, Tomé D, Blachier F, Sanz Y (2016) Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Tech 57:213–232

    Article  CAS  Google Scholar 

  • Puiman P, Stoll B, Mølbak L, de Bruijn A, Schierbeek H, Boye M, Boehm G, Renes I, Van Goudoever J, Burrin D (2013) Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 304(3):300–310

    Article  Google Scholar 

  • Ravindran V, Kornegay ET, Webb KE Jr (1984) Effects of fiber and virginiamycin on nutrient absorption, nutrient retention and rate of passage in growing swine. J Anim Sci 59(2):400–408

    Article  CAS  PubMed  Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45(3):451–461

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci 16:1445

    Article  CAS  Google Scholar 

  • Tan BE, Guan GP, Yao K, Fang J, Liu YY, Li TJ, Sun H, Yin YL (2016) Profiles of amino acids released from different nitrogen composited diets in different segments of the gastrointestinal tract of pigs. J Anim Sci 94:276–278

    Article  CAS  Google Scholar 

  • Torrallardona D, Harris CI, Fuller MF (2003) Lysine synthesized by the gastrointestinal microflora of pigs is absorbed, mostly in the small intestine. Am J Physiol Endocrinol Metab 284(6):1177–1180

    Article  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflug Arch Eur J Phy 447(5):532–542

    Article  CAS  Google Scholar 

  • Wang W, Shi C, Zhang J, Gu W, Li T, Gen M, Chu W, Huang R, Liu Y, Hou Y (2009a) Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 37(4):593–601

    Article  CAS  PubMed  Google Scholar 

  • Wang WC, Gu WT, Tang XF, Geng MM, Fan M, Li TJ, Chu WY, Shi CY, Huang RL, Zhang HF, Yin YL (2009b) Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b(0, +) cDNA in the small intestine of Tibetan suckling piglets. Comp Biochem Phys B 154(1):157–164

    Article  Google Scholar 

  • Wang W, Blachier F, Fu D, Pan J, Yang H, Guo J, Chu W, Kong X, Yin Y (2013) Ontogenic expression of the amino acid transporter b(0, +)AT in suckling Huanjiang piglets: effect of intra-uterine growth restriction. Brit J Nutr 110(5):823–830

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewski JR, Friedrich A, Keller T, Mann M, Koepsell H (2015) The impact of high-fat diet on metabolism and immune defense in small intestine mucosa. J Proteome Res 14(1):353

    Article  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112(1–2):8–22

    Article  Google Scholar 

  • Xiong X, Yang H, Li B, Liu G, Huang R, Li F, Liao P, Zhang Y, Nyachoti CM, Deng D (2015) Dietary supplementation with yeast product improves intestinal function, and serum and ileal amino acid contents in weaned piglets. Livest Sci 171:20–27

    Article  Google Scholar 

  • Yang H, Fu D, Shao H, Kong X, Wang W, Yang X, Nyachoti CM, Yin Y (2012) Impacts of birth weight on plasma, liver and skeletal muscle neutral amino acid profiles and intestinal amino acid transporters in suckling Huanjiang mini-piglets. PLoS One 7(12):e50921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Fu DZ, Kong XF, Wang WC, Yang XJ, Nyachoti CM, Yin YL (2013) Dietary supplementation with N-carbamylglutamate increases the expression of intestinal amino acid transporters in weaned Huanjiang mini-pig piglets. J Anim Sci 91(6):2740–2748

    Article  CAS  PubMed  Google Scholar 

  • Yang YX, Dai ZL, Zhu WY (2014) Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46(11):2489–2501

    Article  CAS  PubMed  Google Scholar 

  • Yap IK, Li JV, Saric J, Martin F-P, Davies H, Wang Y, Wilson ID, Nicholson JK, Jr Utzinger, Marchesi JR (2008) Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7(9):3718–3728

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Ingale S, Kim J, Kim K, Lee S, Park Y, Kwon I, Chae B (2012) Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Animal Feed Sci Tech 177(1):98–107

    Article  CAS  Google Scholar 

  • Zhang J, Yin Y, Shu XG, Li T, Li F, Tan B, Wu Z, Wu G (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45(5):1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yu M, Yang Y, Mu C, Su Y, Zhu W (2016a) Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Anaerobe 42:188–196

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ji H, Liu H, Wang S, Wang J, Wang Y (2016b) Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbio Biot 100(23):10081–10093

    Article  CAS  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115(3):255–266

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y (2013) Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 12(6):2987–2999

    Article  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Akkermans ADL, Vos WMD (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microb 64(10):3854–3859

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (2013CB127300) and Natural Science Foundation of China (31430082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyun Zhu.

Ethics declarations

Conflict of interest

All authors read and approved the final manuscript. The authors have no financial or personal conflicts of interest to declare.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in this study involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: E. I. Closs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Mu, C., Yang, Y. et al. Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids 49, 1587–1599 (2017). https://doi.org/10.1007/s00726-017-2451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2451-0

Keywords

Navigation