Abstract
To obtain key sugar derivatives for making homooligomeric foldamers or α/β-chimera peptides, economic and multigram scale synthetic methods were to be developed. Though described in the literature, the cost-effective making of both 3-amino-3-deoxy-ribofuranuronic acid (H–t X–OH) and its C-3 epimeric stereoisomer, the 3-amino-3-deoxy-xylofuranuronic acid (H–c X–OH) from d-glucose is described here. The present synthetic route elaborated is (1) appropriate for large-scale synthesis; (2) reagent costs reduced (e.g. by a factor of 400); (3) yields optimized are ~80% or higher for all six consecutive steps concluding –t X– or –c X– and (4) reaction times shortened. Thus, a new synthetic route step-by-step optimized for yield, cost, time and purification is given both for d-xylo and d-ribo-amino-furanuronic acids using sustainable chemistry (e.g. less chromatography with organic solvents; using continuous-flow reactor). Our study encompasses necessary building blocks (e.g. –X–OMe, –X–OiPr, –X–NHMe, Fmoc–X–OH) and key coupling reactions making –Aaa–t X–Aaa– or –Aaa–t X–t X–Aaa– type “inserts”. Completed for both stereoisomers of X, including the newly synthesized Fmoc–c X–OH, producing longer oligomers for drug design and discovery is more of a reality than a wish.
This is a preview of subscription content, access via your institution.











Abbreviations
- H-RibAFU(ip)-OH or tX:
-
1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-ribofuranuronic acid
- H-XylAFU(ip)-OH or cX:
-
1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-xylofuranuronic acid
- N3-RibAFU(ip)-OH:
-
1,2-O-Isopropylidene-3-azido-3-deoxy-α-d-ribofuranuronic acid
- N3-XylAFU(ip)-OH:
-
1,2-O-Isopropylidene-3-azido-3-deoxy-α-d-xylofuranuronic acid
- H-XylAFU(ip)-NHMe:
-
N-Methyl-1,2-O-isopropylidene-3-amino-3-deoxy-α-d-xylofuranuronamide
- H-RibAFU(ip)-NHMe:
-
N-Methyl-1,2-O-isopropylidene-3-amino-3-deoxy-α-d-ribofuranuronamide
- Ac-RibAFU(ip)-NHMe:
-
N-Methyl-1,2-O-isopropylidene-3-acetamido-3-deoxy-α-d-ribofuranuronamide
- Ac-XylAFU(ip)-NHMe:
-
N-Methyl-1,2-O-isopropylidene-3-acetamido-3-deoxy-α-d-xylofuranuronamide
References
Altmayer-Henzien A, Declerck V, Farjon J, Merlet D, Guillot R, Aitken DJ (2015) Fine tuning of beta-peptide foldamers: a single atom replacement holds back the switch from an 8-helix to a 12-helix. Angew Chem Int Ed 54:10807–10810
Austin GN, Baird PD, Fleet GWJ, Peach JM, Smith PW, Watkin DJ (1987) 3,6-Dideoxy-3,6-imino-1,2-O-isopropylidene-α-d-glucofuranose as a divergent intermediate for the synthesis of hydroxylated pyrrolidines: synthesis of 1,4-dideoxy-1,4-imino-l-gulitol, 1,4-dideoxy-1,4-imino-d-lyxitol, 2S,3S,4R-3,4-dihydroxyproline and (lS,2R,8S,RaR)-1,2,8-trihydroxyoctahydroindolizine [8-Episwainsonine]. X-ray crystal structure of (lS,2R,8S,8aR)-1,2,8-trihydroxy-5-oxooctahydroindolizine. Tetrahedron 43:3095–3108
Cabrele C, Martinek TA, Reiser O, Berlicki L (2014) Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem 57:9718–9739
Chandrasekhar S, Reddy MS, Jagadeesh B, Prabhakar A, Rao MHVR, Jagannadh B (2004) Formation of a stable 14-helix in short oligomers of furanoid cis-β-sugar-amino acid. J Am Chem Soc 126:13586–13587
Chandrasekhar S, Reddy MS, Babu BN, Jagadeesh B, Prabhakar A, Jagannadh B (2005) Expanding the conformational pool of cis-β-sugar amino acid: accommodation of β-hGly motif in robust 14-Helix. J Am Chem Soc 127:9664–9665
Chandrasekhar S, Reddy GPK, Kiran MU, Nagesh C, Jagadeesh B (2008) Nucleoside derived amino acids (NDA) in foldamer chemistry: synthesis and conformational studies of homooligomers of modified AZT. Tetrahedron Lett 49:2969–2973
Chandrasekhar S, Kiranmai N, Kiran MU, Devi AS, Reddy GPK, Idrisc M, Jagadeesh B (2010) Novel helical foldamers: organized heterogeneous backbone folding in 1:1 α/nucleoside-derived-β-amino acid sequences. Chem Commun 46:6962–6964
Cheng RP, Gellman SH, DeGrado WF (2001) α-Peptides: from structure to function. Chem Rev 101:3219–3232
Csordás B, Nagy A, Harmat V, Zsoldos-Mády V, Leveles I, Pintér I, Farkas V, Perczel A (2016) Origin of problems related to Staudinger reduction in carbopeptoide syntheses. Amino Acids. doi:10.100/s00726-016-2289-x
Declerck V, Aitken DJ (2011) A refined synthesis of enantiomerically pure 2-aminocyclobutane carboxylic acids. Amino Acids 41:587–595
Ferreira SB, Sodero ACR, Cardoso MFC, Lima ES, Kaiser CR, Silva FP FP Jr, Ferreira VF (2010) Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J Med Chem 53:2364–2375
Giri AG, Jogdand GF, Rajamohanan PR, Pandey SK, Ramana CV (2012) Synthesis and structural characterization of homochiral homo-oligomers of cis-γ-methoxy-substituted cis- and trans-Furanoid-β-Amino acids. Eur J Org Chem 13:2656–2663
Giuliano MW, Maynard SJ, Almeida AM, Reidenbach AG, Guo L, Ulrich EC, Guzei IA, Gellman SH (2013) Evaluation of a cyclopentane-based γ-amino acid for the ability to promote α/γ-peptide secondary structure. J Org Chem 78:12351–12361
Gomtsyan A, Savelyeva I, Belyakov S, Kalvinsh I (1992) Synthesis of methyl 3-amino-deoxy-d-alluronate. Carbohydr Res 232:341–348
Gorrea E, Pohl G, Nolis P, Celis S, Burusco KK, Branchadell V, Perczel A, Ortuño RM (2012) Secondary structure of short beta-peptides as the chiral expression of monomeric building units: a rational and predictive model. J Org Chem 77(21):9795–9806
Gruner SAW, Gy Kéri, Venetainer A, Kessler H (2001) Sugar amino acid containing somatostatin analogues that induce apoptosis in both drug-sensitive and multidrug-resistant tumor cells. Org Lett 3:3723–3725
Gruner SAW, Locardi E, Lohof E, Kessler H (2002a) Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem Rev 102:491–514
Gruner SAW, Truffault V, Voll G, Locardi E, Stöckle M, Kessler H (2002b) Design, synthesis, and NMR structure of linear and cyclic oligomers containing novel furanoid sugar amino acids. Chem Eur J 8:4365–4376
Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 47:5933–5941
Hale KJ, Hough L, Manaviazar S, Calabrese A (2015) Rules and stereoelectronic guidelines for the anionic nucleophilic displacement of furanoside and furanose O-sulfonates. Org Lett 17:1738–1741
Hall LD, Miller DC (1976) Fluorinated sulphonic esters of sugars: their synthesis and reactions with pyridine. Carbohydr Res 47:299–305
Helferich B, Dressler H, Griebel R (1939) Ester der Methansulfonsäure in der Zuckergruppe. J Prakt Chem 153:285–299
Hetényi A, Tóth GK, Cs Somlai, Vass E, Martinek TA, Fülöp F (2009) Stabilisation of peptide foldamers in an aqueous medium by incorporation of azapeptide building blocks. Chem Eur J 15:10736–10741
Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408
Jagannadh B, Reddy MS, Rao CL, Prabhakar A, Jagadeesh B, Chandrasekhar S (2006) Self-assembly of cyclic homo- and hetero-β-peptides with cis-furanoid sugar amino acid and β-hGly as building blocks. Chem Commun 46:4847–4849
James WH III, Müller CW, Buchanan EG, Nix MGD, Guo L, Roskop L, Gordon MS, Slipchenko LV, Gellman SH, Zwier TS (2009) Intramolecular amide stacking and its competition with hydrogen bonding in a small foldamer. J Am Chem Soc 131:14243–14245
Kiss L, Fülöp F (2014) Synthesis of carbocyclic and heterocyclic β-aminocarboxylic acids. Chem Rev 114:1116–1169
Knapp K, Górecki M, Frelek J, Luboradzki R, Hollósi M, Zs Majer, Vass E (2014) Comprehensive chiroptical study of proline-containing diamide compounds. Chirality 26:228–242
Kovář J, Jarý J (1969) Amino sugars. XXI. Synthesis of 3,6-diamino-3,6-dideoxy-d-glucose and its derivatives. Collect Czech Chem Commun 34:2619–2626
Kulinkovich LN, Timoshchuk VA (1983) Synthesis of unsaturated nucleosides of uronic acids. Zh Obshch Khim 53:1652–1655
Mándity IM, Fülöp F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov 10(11):1163–1177
Martinek TA, Fülöp F (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702
Nayak UG, Whistler RL (1969) Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolylsulfonyl)-α-d-glucofuranose. J Org Chem 34:3819–3822
Pandey SK, Jogdand GF, Oliveira JCA, Mata RA, Rajamohanan PR, Ramana CV (2011) Synthesis and structural characterization of homochiral homo-oligomers of parent cis- and trans-Furanoid-β-amino acids. Chem Eur J 17:12946–12954
Perczel A, Hollósi M, Foxman BM, Fasman GD (1991) Conformational analysis of pseudocyclic hexapeptides based on quantitative circular dichroism (CD), NOE, and X-ray data. The pure CD spectra of type I and type II β-turns. J Am Chem Soc 113:9772–9784
Pilsl LKA, Reiser O (2011) α/β-Peptide foldamers: state of the art. Amino Acids 41:709–718
Pohl G, Gorrea E, Branchadell V, Ortuño RM, Perczel A, Gy Tarczay (2013) Foldamers of β-peptides: conformational preference of peptides formed by rigid building blocks The first MI-IR spectra of a triamide nanosystem. Amino Acids 45(4):957–973
Reckendorf Z, Meyer W (1968) Diaminozucker, IX. Synthese der 3-Amino-3-desoxy- und 3.6-Diamino-3.6-didesoxy-d-glucose. Chem Ber 101:3802–3807
Rjabovs V, Turks M (2013) Tetrahydrofuran amino acids of the past decade. Tetrahedron 69:10693–10710
Schmidt OTH (1963) Reaction of carbohydrates. In: Whistler RL, Wolfrom ML, BeMiller JN (eds) Methods Carbohydr Chem, vol 2. Academic Press, New York, pp 318–325
Theoneste M, Stephane G, Veronique C (2009) Synthesis and antibacterial activity of aminodeoxyglucose derivatives against Listeria innocua and Salmonella typhimurium. J Agric Food Chem 57:8770–8775
Threlfall R, Davies A, Howarth NM, Fisher J, Cosstick R (2008) Peptides derived from nucleoside β-amino acids form an unusual 8-helix. Chem Commun 5:585–587
Vatéle JM, Hanessian S (1996) Design and reactivity of organic functional groups—preparation and nucleophilic displacement reactions of imidazole-l-sulfonates (imidazylates). Tetrahedron 52:10557–10568
Watterson PM, Pickering L, Smith MD, Hudson SJ, Marsh PR, Mordaunt JE, Watkin DJ, Newman CJ, Fleet GWJ (1999) 3-Azidotetrahydrofuran-2-Carboxylates: a family of five-ring templated β-aminoacid foldamers? Tetrahedron Asymmetry 10:1855–1859
Whistler RL, Doner LW (1972) General carbohydrate methods. In: Whistler RL, BeMiller JN (eds) Methods Carbohydr Chem, vol 6. Academic Press, New York, pp 215–217
Zsoldos-Mády V, Zbiral E (1986) A new approach to 6-Deoxy-d-allofuranose- and 6-Deoxy-l-talofuranose derivatives from 1,2:5,6-Di-O-isopropylidene-α-d-glucofuranose. Monatsh Chem 117:1325–1338
Acknowledgements
The authors gratefully acknowledge Szebasztián Szaniszló for his contribution to the preparative work and Prof. Imre G Csizmadia for helpful discussion. The authors wish to thank László Kocsis and Gábor Szirbik from ThalesNano Inc. (Budapest, Hungary) for their help and advice in hydrogenation reaction and for their support with the equipment, and Anita Kapros for her help in MS measurements. This work was supported by Grants from the Hungarian Scientific Research Fund (OTKA NK101072).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Research involving human participants and/or animals
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Handling Editor: J. Bode.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Nagy, A., Csordás, B., Zsoldos-Mády, V. et al. C-3 epimers of sugar amino acids as foldameric building blocks: improved synthesis, useful derivatives, coupling strategies. Amino Acids 49, 223–240 (2017). https://doi.org/10.1007/s00726-016-2346-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-016-2346-5
Keywords
- Sugar amino acids
- Azido sugars
- Nucleophilic substitution
- Foldamers