Skip to main content
Log in

Inter-molecular crosslinking activity is engendered by the dimeric form of transglutaminase 2

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TGase 2) catalyzes a crosslink between protein bound-glutamine and -lysine. We proposed the mechanism of TGase 2 activation depends on conformation change from unfolded monomer to unfolded dimer. We found that TGase 2 has temperature-sensitive conformation change system at 30 °C. Small-angle X-ray scattering analysis showed that the enzyme was maintained as an unfolded monomer at temperatures below 30 °C, but changed to an unfolded dimer at over 30 °C. Mass analysis revealed that the C-terminus of TGase 2 was the critical region for dimerization. Furthermore, this conformational switch creates new biochemical reactivity that catalyzed inter-molecular crosslink at above 30 °C as an unfolded dimer of TGase 2 while catalyzed intra-molecular crosslink at below 30 °C as an unfolded monomer of TGase 2. The mechanism of TGase 2 activation depends on temperature-sensitive conformation change from unfolded monomer to unfolded dimer at over 30 °C. Furthermore, inter-molecular crosslinking activity is generated by the dimeric form of TGase 2. TGase 2 switches its conformation from a monomer to a dimer following a change in temperature, which engendered unique catalytic function of enzyme as inter-molecular crosslinking activity with calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716. doi:10.1111/j.1742-4658.2011.08346.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowness JM (1987) Cartilage fucoproteins with sites for cross-linking by transglutaminase. Biochem Cell Biol 65(4):280–285

    Article  CAS  PubMed  Google Scholar 

  • Eitan S, Schwartz M (1993) A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261(5117):106–108

    Article  CAS  PubMed  Google Scholar 

  • Falasca L, Farrace MG, Rinaldi A, Tuosto L, Melino G, Piacentini M (2008) Transglutaminase type II is involved in the pathogenesis of endotoxic shock. J Immunol 180(4):2616–2624

    Article  CAS  PubMed  Google Scholar 

  • Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56

    CAS  PubMed  Google Scholar 

  • Folk JE, Chung SI (1973) Molecular and catalytic properties of transglutaminases. Adv Enzymol Relat Areas Mol Biol 38:109–191

    CAS  PubMed  Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J Appl Crystallogr 42(2):342–346. doi:10.1107/S0021889809000338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London, New York

    Google Scholar 

  • Han BG, Cho JW, Cho YD, Jeong KC, Kim SY, Lee BI (2010) Crystal structure of human transglutaminase 2 in complex with adenosine triphosphate. Int J Biol Macromol 47(2):190–195. doi:10.1016/j.ijbiomac.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  • Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96(13):7388–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keillor JW, Apperley KY, Akbar A (2015) Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 36(1):32–40. doi:10.1016/j.tips.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci 11:3026–3035

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Choi YB, Han BG, Park SY, Jeon Y, Kim DH, Ahn ER, Shin JE, Lee BI, Lee H, Hong KM, Kim SY (2011) Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking. Oncogene 30(48):4780–4790. doi:10.1038/onc.2011.183

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Aoki N (1986) Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor. J Biol Chem 261(33):15591–15595

    CAS  PubMed  Google Scholar 

  • Kojima S, Inui T, Muramatsu H, Suzuki Y, Kadomatsu K, Yoshizawa M, Hirose S, Kimura T, Sakakibara S, Muramatsu T (1997) Dimerization of midkine by tissue transglutaminase and its functional implication. J Biol Chem 272(14):9410–9416

    Article  CAS  PubMed  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36(5):1277–1282. doi:10.1107/S0021889803012779

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34(1):33–41. doi:10.1107/S0021889800014126

    Article  CAS  Google Scholar 

  • Ku BM, Kim DS, Kim KH, Yoo BC, Kim SH, Gong YD, Kim SY (2013) Transglutaminase 2 inhibition found to induce p53 mediated apoptosis in renal cell carcinoma. FASEB J 27(9):3487–3495. doi:10.1096/fj.12-224220

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279(51):53725–53735. doi:10.1074/jbc.M407627200

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747. doi:10.1073/pnas.042454899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin KE, Sjostrom H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Ishikawa K, Yokoyama K, Ohtsuka T, Nio N, Suzuki E (2001) Crystal structure of red sea bream transglutaminase. J Biol Chem 276(15):12055–12059. doi:10.1074/jbc.M009862200

    Article  CAS  PubMed  Google Scholar 

  • Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136(5):1151–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SS, Kim JM, Kim DS, Kim IH, Kim SY (2006) Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J Biol Chem 281(46):34965–34972. doi:10.1074/jbc.M604150200

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Kim DS, Ko C, Lee SJ, Oh SH, Kim SY (2011) TNF-alpha mediated NF-kappaB activation is constantly extended by transglutaminase 2. Front Biosci (Elite Ed) 3:341–354

    Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327. doi:10.1371/journal.pbio.0050327

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenyuk AV, Svergun DI (1991) GNOM—a program package for small-angle scattering data processing. J Appl Crystallogr 24(5):537–540. doi:10.1107/S002188989100081X

    Article  Google Scholar 

  • Singh G, Zhang J, Ma Y, Cerione RA, Antonyak MA (2016) The different conformational states of tissue transglutaminase have opposing affects on cell viability. J Biol Chem. doi:10.1074/jbc.M115.699108

    Google Scholar 

  • Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285(33):25402–25409. doi:10.1074/jbc.M109.097162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamnaes J, Iversen R, du Pre MF, Chen X, Sollid LM (2015) Enhanced B-cell receptor recognition of the autoantigen transglutaminase 2 by efficient catalytic self-multimerization. PLoS One 10(8):e0134922. doi:10.1371/journal.pone.0134922

    Article  PubMed  PubMed Central  Google Scholar 

  • Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773. doi:10.1107/S0021889895007047

    Article  CAS  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36(3 Part 1):860–864. doi:10.1107/S0021889803000268

    Article  CAS  Google Scholar 

  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release 72(1–3):101–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at Beamline 4C of the Pohang Light Source for their assistance during the SAXS experiments. This research was supported by a grant from the National Cancer Center of Korea to S.-Y.K. (NCC1410280-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Youl Kim.

Ethics declarations

Ethical approval

Authors make sure that the manuscript complies with the Ethical Rules applicable for this journal.

Conflict of interest

The authors have no conflicts of interest (financial or non-financial) to declare.

Additional information

Handling Editors: S. Beninati, M. Piacentini and C.M. Bergamini.

N. Kim and W.-K. Lee contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N., Lee, WK., Lee, SH. et al. Inter-molecular crosslinking activity is engendered by the dimeric form of transglutaminase 2. Amino Acids 49, 461–471 (2017). https://doi.org/10.1007/s00726-016-2293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2293-1

Keywords

Navigation