Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Origin of problems related to Staudinger reduction in carbopeptoid syntheses

  • 446 Accesses

  • 4 Citations


We report the solid phase synthesis of –GG-X-GG– type α/β-carbopeptoids incorporating RibAFU(ip) (1a, tX) or XylAFU(ip) (2a, cX) sugar amino acids. Though coupling efficacy is moderate, both the lengthier synthetic route using Fmoc derivative (e.g., Fmoc-RibAFU(ip)-OH) and the azido derivative (e.g., N3-RibAFU(ip)-OH) via Staudinger reaction with nBu3P can be successfully applied. Both X-ray diffraction, 1H- and 31P-NMR, and theoretical (QM) data support and explain why the application of Ph3P as Staudinger reagent is “ineffective” in the case of a cis stereoisomer, if cX is attached to the preceding residue with a peptide (–CONH–) bond. The failure of the polypeptide chain elongation with N3-cX originates from the “coincidence” of a steric crowdedness and an electronic effect disabling the mandatory nucleophilic attack during the hydrolysis of a quasi penta-coordinated triphenylphosphinimine. Nevertheless, the synthesis of the above α/β-chimera peptides as completed now by a new pathway via 1,2-O-isopropylidene-3-azido-3-deoxy-ribo- and -xylo-furanuronic acid (H-RibAFU(ip)-OH 1a and H-XylAFU(ip)-OH 2a) coupled with N-protected α-amino acids on solid phase could serve as useful examples and starting points of further synthetic efforts.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Fig. 3


H-RibAFU(ip)-OH or tX:

1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-ribofuranuronic acid

H-XylAFU(ip)-OH or cX:

1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-xylofuranuronic acid


1,2-O-Isopropylidene-3-azido-3-deoxy-α-d-ribofuranuronic acid


1,2-O-isopropylidene-3-azido-3-deoxy-α-d-xylofuranuronic acid





H-XylAFU(ip)-NHMe2 :



  1. Andreini M, Taillefumier C, Chretien F, Thery V, Chapleur Y (2009) Synthesis and solution conformation of homo-β-peptides consisting of N-mannofuranosyl-3-ulosonic acids. J Org Chem 74:7651–7659

  2. Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin—studies on anchoring of Fmoc-amino acids and peptide cleavage. Int. J. Peptide Protein Res 37:513–520

  3. Beck DAC, Alonso DOV, Inoyama D, Daggett V (2008) The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. PNAS 105:12259–12264

  4. Beke T, Csizmadia IG, Perczel A (2004) On the flexibility of β-peptides. J Comput Chem 25:285–307

  5. Beke T, Czajlik A, Bálint B, Perczel A (2008) A theoretical comparison of self-assembling α- and β-peptide nanostructures: toward design of β-barrel frameworks. ACS Nano 2:545–553

  6. Brase S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5188–5240

  7. Cabrele C, Martinek TA, Reiser O, Berlicki Ł (2014) Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem 57:9718–97393

  8. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis—a practical approach. Oxford University Press, Oxford

  9. Chandrasekhar S, Reddy SM, Jagadeesh B, Prabhakar A, Ramana Rao MHV, Jagannadh B (2004) Formation of a stable 14-helix in short oligomers of furanoid cis-β-sugar-amino acid. J Am Chem Soc 126:13586–13587

  10. Chandrasekhar S, Rao CL, Seenaiah M, Naresh P, Jagadeesh B, Manjeera D, Sarkar A, Bhadra MP (2009) Total synthesis of azumamide E and sugar amino acid-containing analogue. J Org Chem 74:401–404

  11. Cheng RP, Gellman SH, DeGrado WF (2001) Beta-peptides: from structure to function. Chem Rev 101:3210–3232

  12. Frisch MJ et al (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT

  13. García-Martín F, Bayó-Puxan N, Cruz LJ, Bohling JC, Albericio F (2007) Chlorotrityl chloride (CTC) resin as a reusable carboxyl protecting group. QSAR Comb Sci 26:1027–1035

  14. Giri AG, Jogdand GF, Rajamohanan PR, Pandey SK, Ramana CV (2012) Synthesis and structural characterization of homochiral homo-oligomers of cis-γ-methoxy-substituted cis- and trans-furanoid-β-amino acids. Eur. J. Org. Chem. 2012:2656–2663

  15. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO v. 5.9. 5.9 ed. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

  16. Gololobov YG (1992) Recent advances in the Staudinger reaction. Tetrahedron 48:1353–1406

  17. Gololobov YG, Zhmurova LN, Kasukhin LF (1981) Sixty years of Staudinger reaction. Tetrahedron 37:437–472

  18. Gruner SAW, Gy Kéri, Venetainer A, Kessler H (2001) Sugar amino acid containing somatostatin analogues that induce apoptosis in both drug-sensitive and multidrug-resistant tumor cells. Org Lett 3:3723–3725

  19. Gruner SAW, Locardi E, Lohof E, Kessler H (2002a) Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem Rev 102:491–514

  20. Gruner SAW, Truffault V, Voll G, Locardi E, Stöckle M, Kessler H (2002b) Design, synthesis, and NMR structure of linear and cyclic oligomers containing novel furanoid sugar amino acids. Chem Eur J 8:4365–4376

  21. Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 47:5933–5941

  22. Hecht S, Huc I (2007) Foldamers: structure, properties and applications. Wiley-VCH, Weinheim

  23. Herradón B, Seebach D (1989) Mono- and dialkylation of derivatives of (1R,2S)-2-hydroxycyclopentanecarboxylic acid and -cyclohexanecarboxylic acid via bicyclic dioxanones: selective generation of three contiguous stereogenic centers on a cyclohexane ring. Helv Chim Acta 72:690–714

  24. Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408

  25. John F, Wittmann V (2015) Orthogonally protected furanoid sugar diamino acids for solid-phase synthesis of oligosaccharide mimetics. J Org Chem 80:7477–7485

  26. Kessler H, Diefenbach B, Finsinger D, Geyer A, Gurrath M, Goodman SL, Hölzemann G, Haubner R, Jonczyk A, Müller G, Graf von Roedern E, Wermuth J (1995) Design of superactive and selective integrin receptor antagonists containing the RGD sequence. Lett Pept Sci 2:155–160

  27. Kocsis L, Ruff F, Gy Orosz (2006) The effect of peptide length on the cleavage kinetics of 2-chlorotrityl resin-bound ethers. J Pept Sci 12:428–436

  28. Kovács J, Pintér I, Messmer A, Tóth G (1985) Unprotected sugar phosphinimines: a facile route to cyclic carbamates of aminosugars. Carbohydr Res 141:57–65

  29. Leffler JE, Temple RD (1967) Staudinger reaction between triarylphosphines and azides. A study of the mechanism. J Am Chem Soc 89:5235–5246

  30. Long DD, Hungerford NL, Smith MD, Brittain DEA, Marquess DG, Claridge TDW, Fleet GWJ (1999) From sequencamers to foldamers? Tetrameric furanose carbopeptoids from cis- and trans-5-aminomethyl-tetrahydrofuran-2-carboxylates. Tetrahedron Lett 40:2195–2198

  31. Lundquist JT, Pelletier JC (2001) Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org Lett 3:781–783

  32. Malkinson JP, Falconer RA, Tóth I (2000) Synthesis of C-terminal glycopeptides from resin-bound glycosyl azides via a modified staudinger reaction. J Org Chem 65:5249–5252

  33. Mándity IM, Fülöp F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Exp Opin Drug Discov 10:1163–1177

  34. Martinek TA, Fülöp F (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702

  35. Meldal M, Juliano MA, Jansson AM (1997) Azido acids in a novel method of solid-phase peptide synthesis. Tetrahedron Lett 38:2531–2534

  36. Messmer A, Pintér I, Szegő F (1964) Triphenylphosphine N-acetylglycosylimides and N, N′-bis(acetylglycosyl)carbodiimides. Angew Chem Int Ed 3:228

  37. Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2:1939–1941

  38. Pandey SK, Jogdand GF, Oliveira JCA, Mata RA, Rajamohanan PR, Ramana CV (2011) Synthesis and structural characterization of homochiral homo-oligomers of parent cis- and trans-furanoid-β-amino acids. Chem Eur J 17:12946–12954

  39. Pilsl LKA, Reiser O (2011) α/β-Peptide foldamers: state of the art. Amino Acids 41:709–718

  40. Risseeuw MDP, Overhand M, Fleet GWJ, Simone MI (2013) A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 45:613–689

  41. Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2:2141–2143

  42. Schilling CI, Jung N, Biskup M, Schepers U, Bräse S (2011) Bioconjugation via azide–Staudinger ligation: an overview. Chem Soc Rev 40:4840–4871

  43. Sharma GVM, Nagendar P, Ramakrishna KVS, Chandramouli N, Choudhary M, Kunwar AC (2008) Three-residue turns in α/β-peptides and their application in the design of tertiary structures. Chem Asian J 3:969–983

  44. Sharma GVM, Reddy PS, Chatterjee D, Kunwar AC (2011) Synthesis and structural studies of homooligomers of geminally disubstituted β2,2-amino acids with carbohydrate side chain. J Org Chem 76:1562–1571

  45. Shi Z, Chen K, Liu Z, Ng A, Bracken WC, Kallenbach NR (2005) Polyproline II propensities from GGXGG peptides reveal an anticorrelation with β-sheet scales. Proc Natl Acad Sci USA 102:17964–17968

  46. Simone MI, Soengas R, Newton CR, Watkin DJ, Fleet GWJ (2005) Branched tetrahydrofuran α,α-disubstituted-δ-sugar amino acid scaffolds from branched sugar lactones: a new family of foldamers? Tetrahedron Lett 46:5761–5765

  47. Staudinger H, Hauser E (1921) Über neue organische phosphorverbindungen IV phosphinimine Helv. Chim. Acta 4:861–886

  48. Staudinger H, Meyer J (1919) Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv Chim Acta 2:635–646

  49. Temelkoff DP, Zeller M, Norris P (2006) N-Glycoside neoglycotrimers from 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide. Carbohydr Res 341:1081–1090

  50. Tornøe CW, Davis P, Porreca F, Meldal M (2000) α-Azido acids for direct use in solid-phase peptide synthesis. J Pept Sci 6:594–602

  51. Van Rompaey P, Jacobson KA, Gross AS, Gao ZG, Van Calenbergh S (2005) Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Biorg Med Chem 13:973–983

Download references


The authors wish to thank László Kocsis and Gábor Szirbik from ThalesNano Inc. (Budapest, Hungary) for their help and advice in the hydrogenation reaction. The Biostruct Laboratory at the Budapest University of Technology and Economics is acknowledged for collecting X-ray diffraction data. The authors thank Petra Rovó for her help in NMR measurements. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K72973, NK101072) and TÁMOP-4.2.1. B-09/1/KMR.

Author information

Correspondence to András Perczel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: J. Bode.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Csordás, B., Nagy, A., Harmat, V. et al. Origin of problems related to Staudinger reduction in carbopeptoid syntheses. Amino Acids 48, 2619–2633 (2016). https://doi.org/10.1007/s00726-016-2289-x

Download citation


  • Carbopeptoids
  • Staudinger reaction
  • Sugar amino acids
  • Iminophosphorane