Amino Acids

, Volume 48, Issue 11, pp 2619–2633 | Cite as

Origin of problems related to Staudinger reduction in carbopeptoid syntheses

  • Barbara Csordás
  • Adrienn Nagy
  • Veronika Harmat
  • Virág Zsoldos-Mády
  • Ibolya Leveles
  • István Pintér
  • Viktor Farkas
  • András Perczel
Original Article

Abstract

We report the solid phase synthesis of –GG-X-GG– type α/β-carbopeptoids incorporating RibAFU(ip) (1a, tX) or XylAFU(ip) (2a, cX) sugar amino acids. Though coupling efficacy is moderate, both the lengthier synthetic route using Fmoc derivative (e.g., Fmoc-RibAFU(ip)-OH) and the azido derivative (e.g., N3-RibAFU(ip)-OH) via Staudinger reaction with nBu3P can be successfully applied. Both X-ray diffraction, 1H- and 31P-NMR, and theoretical (QM) data support and explain why the application of Ph3P as Staudinger reagent is “ineffective” in the case of a cis stereoisomer, if cX is attached to the preceding residue with a peptide (–CONH–) bond. The failure of the polypeptide chain elongation with N3-cX originates from the “coincidence” of a steric crowdedness and an electronic effect disabling the mandatory nucleophilic attack during the hydrolysis of a quasi penta-coordinated triphenylphosphinimine. Nevertheless, the synthesis of the above α/β-chimera peptides as completed now by a new pathway via 1,2-O-isopropylidene-3-azido-3-deoxy-ribo- and -xylo-furanuronic acid (H-RibAFU(ip)-OH 1a and H-XylAFU(ip)-OH 2a) coupled with N-protected α-amino acids on solid phase could serve as useful examples and starting points of further synthetic efforts.

Keywords

Carbopeptoids Staudinger reaction Sugar amino acids Iminophosphorane 

Abbreviations

H-RibAFU(ip)-OH or tX

1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-ribofuranuronic acid

H-XylAFU(ip)-OH or cX

1,2-O-Isopropylidene-3-amino-3-deoxy-α-d-xylofuranuronic acid

N3-RibAFU(ip)-OH

1,2-O-Isopropylidene-3-azido-3-deoxy-α-d-ribofuranuronic acid

N3-XylAFU(ip)-OH

1,2-O-isopropylidene-3-azido-3-deoxy-α-d-xylofuranuronic acid

H-RibAFU(ip)-NHMe

N-Methyl-1,2-O-isopropylidene-3-amino-3-deoxy-α-d-ribofuranuronamide

H-XylAFU(ip)-NHMe

N-methyl-1,2-O-isopropylidene-3-amino-3-deoxy-α-D-xylofuranuronamide

H-XylAFU(ip)-NHMe2

N,N-Dimethyl-1,2-O-isopropylidene-3-amino-3-deoxy-α-d-xylofuranuronamide

Supplementary material

726_2016_2289_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 152 kb)

References

  1. Andreini M, Taillefumier C, Chretien F, Thery V, Chapleur Y (2009) Synthesis and solution conformation of homo-β-peptides consisting of N-mannofuranosyl-3-ulosonic acids. J Org Chem 74:7651–7659CrossRefPubMedGoogle Scholar
  2. Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin—studies on anchoring of Fmoc-amino acids and peptide cleavage. Int. J. Peptide Protein Res 37:513–520Google Scholar
  3. Beck DAC, Alonso DOV, Inoyama D, Daggett V (2008) The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. PNAS 105:12259–12264CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beke T, Csizmadia IG, Perczel A (2004) On the flexibility of β-peptides. J Comput Chem 25:285–307CrossRefPubMedGoogle Scholar
  5. Beke T, Czajlik A, Bálint B, Perczel A (2008) A theoretical comparison of self-assembling α- and β-peptide nanostructures: toward design of β-barrel frameworks. ACS Nano 2:545–553CrossRefPubMedGoogle Scholar
  6. Brase S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5188–5240CrossRefGoogle Scholar
  7. Cabrele C, Martinek TA, Reiser O, Berlicki Ł (2014) Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem 57:9718–97393CrossRefPubMedGoogle Scholar
  8. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis—a practical approach. Oxford University Press, OxfordGoogle Scholar
  9. Chandrasekhar S, Reddy SM, Jagadeesh B, Prabhakar A, Ramana Rao MHV, Jagannadh B (2004) Formation of a stable 14-helix in short oligomers of furanoid cis-β-sugar-amino acid. J Am Chem Soc 126:13586–13587CrossRefPubMedGoogle Scholar
  10. Chandrasekhar S, Rao CL, Seenaiah M, Naresh P, Jagadeesh B, Manjeera D, Sarkar A, Bhadra MP (2009) Total synthesis of azumamide E and sugar amino acid-containing analogue. J Org Chem 74:401–404CrossRefPubMedGoogle Scholar
  11. Cheng RP, Gellman SH, DeGrado WF (2001) Beta-peptides: from structure to function. Chem Rev 101:3210–3232CrossRefGoogle Scholar
  12. Frisch MJ et al (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  13. García-Martín F, Bayó-Puxan N, Cruz LJ, Bohling JC, Albericio F (2007) Chlorotrityl chloride (CTC) resin as a reusable carboxyl protecting group. QSAR Comb Sci 26:1027–1035CrossRefGoogle Scholar
  14. Giri AG, Jogdand GF, Rajamohanan PR, Pandey SK, Ramana CV (2012) Synthesis and structural characterization of homochiral homo-oligomers of cis-γ-methoxy-substituted cis- and trans-furanoid-β-amino acids. Eur. J. Org. Chem. 2012:2656–2663CrossRefGoogle Scholar
  15. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO v. 5.9. 5.9 ed. Theoretical Chemistry Institute, University of Wisconsin, Madison, WisconsinGoogle Scholar
  16. Gololobov YG (1992) Recent advances in the Staudinger reaction. Tetrahedron 48:1353–1406CrossRefGoogle Scholar
  17. Gololobov YG, Zhmurova LN, Kasukhin LF (1981) Sixty years of Staudinger reaction. Tetrahedron 37:437–472CrossRefGoogle Scholar
  18. Gruner SAW, Gy Kéri, Venetainer A, Kessler H (2001) Sugar amino acid containing somatostatin analogues that induce apoptosis in both drug-sensitive and multidrug-resistant tumor cells. Org Lett 3:3723–3725CrossRefPubMedGoogle Scholar
  19. Gruner SAW, Locardi E, Lohof E, Kessler H (2002a) Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem Rev 102:491–514CrossRefPubMedGoogle Scholar
  20. Gruner SAW, Truffault V, Voll G, Locardi E, Stöckle M, Kessler H (2002b) Design, synthesis, and NMR structure of linear and cyclic oligomers containing novel furanoid sugar amino acids. Chem Eur J 8:4365–4376CrossRefPubMedGoogle Scholar
  21. Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 47:5933–5941CrossRefGoogle Scholar
  22. Hecht S, Huc I (2007) Foldamers: structure, properties and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  23. Herradón B, Seebach D (1989) Mono- and dialkylation of derivatives of (1R,2S)-2-hydroxycyclopentanecarboxylic acid and -cyclohexanecarboxylic acid via bicyclic dioxanones: selective generation of three contiguous stereogenic centers on a cyclohexane ring. Helv Chim Acta 72:690–714CrossRefGoogle Scholar
  24. Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408CrossRefPubMedPubMedCentralGoogle Scholar
  25. John F, Wittmann V (2015) Orthogonally protected furanoid sugar diamino acids for solid-phase synthesis of oligosaccharide mimetics. J Org Chem 80:7477–7485CrossRefPubMedGoogle Scholar
  26. Kessler H, Diefenbach B, Finsinger D, Geyer A, Gurrath M, Goodman SL, Hölzemann G, Haubner R, Jonczyk A, Müller G, Graf von Roedern E, Wermuth J (1995) Design of superactive and selective integrin receptor antagonists containing the RGD sequence. Lett Pept Sci 2:155–160CrossRefGoogle Scholar
  27. Kocsis L, Ruff F, Gy Orosz (2006) The effect of peptide length on the cleavage kinetics of 2-chlorotrityl resin-bound ethers. J Pept Sci 12:428–436CrossRefPubMedGoogle Scholar
  28. Kovács J, Pintér I, Messmer A, Tóth G (1985) Unprotected sugar phosphinimines: a facile route to cyclic carbamates of aminosugars. Carbohydr Res 141:57–65CrossRefGoogle Scholar
  29. Leffler JE, Temple RD (1967) Staudinger reaction between triarylphosphines and azides. A study of the mechanism. J Am Chem Soc 89:5235–5246CrossRefGoogle Scholar
  30. Long DD, Hungerford NL, Smith MD, Brittain DEA, Marquess DG, Claridge TDW, Fleet GWJ (1999) From sequencamers to foldamers? Tetrameric furanose carbopeptoids from cis- and trans-5-aminomethyl-tetrahydrofuran-2-carboxylates. Tetrahedron Lett 40:2195–2198CrossRefGoogle Scholar
  31. Lundquist JT, Pelletier JC (2001) Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org Lett 3:781–783CrossRefPubMedGoogle Scholar
  32. Malkinson JP, Falconer RA, Tóth I (2000) Synthesis of C-terminal glycopeptides from resin-bound glycosyl azides via a modified staudinger reaction. J Org Chem 65:5249–5252CrossRefPubMedGoogle Scholar
  33. Mándity IM, Fülöp F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Exp Opin Drug Discov 10:1163–1177CrossRefGoogle Scholar
  34. Martinek TA, Fülöp F (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702CrossRefPubMedGoogle Scholar
  35. Meldal M, Juliano MA, Jansson AM (1997) Azido acids in a novel method of solid-phase peptide synthesis. Tetrahedron Lett 38:2531–2534CrossRefGoogle Scholar
  36. Messmer A, Pintér I, Szegő F (1964) Triphenylphosphine N-acetylglycosylimides and N, N′-bis(acetylglycosyl)carbodiimides. Angew Chem Int Ed 3:228CrossRefGoogle Scholar
  37. Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2:1939–1941CrossRefPubMedGoogle Scholar
  38. Pandey SK, Jogdand GF, Oliveira JCA, Mata RA, Rajamohanan PR, Ramana CV (2011) Synthesis and structural characterization of homochiral homo-oligomers of parent cis- and trans-furanoid-β-amino acids. Chem Eur J 17:12946–12954CrossRefPubMedGoogle Scholar
  39. Pilsl LKA, Reiser O (2011) α/β-Peptide foldamers: state of the art. Amino Acids 41:709–718CrossRefPubMedGoogle Scholar
  40. Risseeuw MDP, Overhand M, Fleet GWJ, Simone MI (2013) A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 45:613–689CrossRefPubMedGoogle Scholar
  41. Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2:2141–2143CrossRefPubMedGoogle Scholar
  42. Schilling CI, Jung N, Biskup M, Schepers U, Bräse S (2011) Bioconjugation via azide–Staudinger ligation: an overview. Chem Soc Rev 40:4840–4871CrossRefPubMedGoogle Scholar
  43. Sharma GVM, Nagendar P, Ramakrishna KVS, Chandramouli N, Choudhary M, Kunwar AC (2008) Three-residue turns in α/β-peptides and their application in the design of tertiary structures. Chem Asian J 3:969–983CrossRefPubMedGoogle Scholar
  44. Sharma GVM, Reddy PS, Chatterjee D, Kunwar AC (2011) Synthesis and structural studies of homooligomers of geminally disubstituted β2,2-amino acids with carbohydrate side chain. J Org Chem 76:1562–1571CrossRefPubMedGoogle Scholar
  45. Shi Z, Chen K, Liu Z, Ng A, Bracken WC, Kallenbach NR (2005) Polyproline II propensities from GGXGG peptides reveal an anticorrelation with β-sheet scales. Proc Natl Acad Sci USA 102:17964–17968CrossRefPubMedPubMedCentralGoogle Scholar
  46. Simone MI, Soengas R, Newton CR, Watkin DJ, Fleet GWJ (2005) Branched tetrahydrofuran α,α-disubstituted-δ-sugar amino acid scaffolds from branched sugar lactones: a new family of foldamers? Tetrahedron Lett 46:5761–5765CrossRefGoogle Scholar
  47. Staudinger H, Hauser E (1921) Über neue organische phosphorverbindungen IV phosphinimine Helv. Chim. Acta 4:861–886CrossRefGoogle Scholar
  48. Staudinger H, Meyer J (1919) Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv Chim Acta 2:635–646CrossRefGoogle Scholar
  49. Temelkoff DP, Zeller M, Norris P (2006) N-Glycoside neoglycotrimers from 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide. Carbohydr Res 341:1081–1090CrossRefPubMedGoogle Scholar
  50. Tornøe CW, Davis P, Porreca F, Meldal M (2000) α-Azido acids for direct use in solid-phase peptide synthesis. J Pept Sci 6:594–602CrossRefPubMedGoogle Scholar
  51. Van Rompaey P, Jacobson KA, Gross AS, Gao ZG, Van Calenbergh S (2005) Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Biorg Med Chem 13:973–983CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Barbara Csordás
    • 1
  • Adrienn Nagy
    • 1
  • Veronika Harmat
    • 1
  • Virág Zsoldos-Mády
    • 2
  • Ibolya Leveles
    • 3
  • István Pintér
    • 1
  • Viktor Farkas
    • 2
  • András Perczel
    • 1
    • 2
  1. 1.Laboratory of Structural Chemistry and Biology, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.MTA-ELTE Protein Modelling Research GroupBudapestHungary
  3. 3.BME Department of Applied Biotechnology and Food ScienceBudapestHungary

Personalised recommendations