Skip to main content
Log in

Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assakura MT, Reichl AP, Mandelbaum FR (1986) Comparison of immunological, biochemical and biophysical properties of three hemorrhagic factors isolated from the venom of Bothrops jararaca (jararaca). Toxicon 24(9):943–946. doi:10.1016/0041-0101(86)90094-2

    Article  CAS  PubMed  Google Scholar 

  • Assakura MT, Silva CA, Mentele R, Camargo AC, Serrano SM (2003) Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon 41:217–227

    Article  CAS  PubMed  Google Scholar 

  • Baramova EN, Shannon JD, Bjarnason JB, Fox JW (1990) Identification of the cleavage sites by a hemorrhagic metalloproteinase in type IV collagen. Matrix 10(2):91–97. doi:10.1016/S0934-8832(11)80175-7

    Article  CAS  PubMed  Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  PubMed  Google Scholar 

  • Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194. doi:10.1016/j.biotechadv.2011.09.016

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SM (2008) Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275(12):3016–3030. doi:10.1111/j.1742-4658.2008.06466.x

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SMT (2009) Timeline of key events in snake venom metalloproteinase research. J Proteomics 72:200–209. doi:10.1016/j.jprot.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JM, Rucavado A, Escalante T, Díaz C (2005) Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45(8):997–1011. doi:10.1016/j.toxicon.2005.02.029

    Article  PubMed  Google Scholar 

  • Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146(Pt 10):2495–2508. doi:10.1099/00221287-146-10-2495

    Article  CAS  PubMed  Google Scholar 

  • Jia LG, Wang XM, Shannon JD, Bjarnason JB, Fox JW (2000) Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A. Arch Biochem Biophys 373:281–286. doi:10.1006/abbi.1999.1517

    Article  CAS  PubMed  Google Scholar 

  • Kamiguti AS, Gallagher P, Marcinkiewicz C, Theakston RD, Zuzel M, Fox JW (2003) Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Lett 549:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68. doi:10.1023/B:JSFG.0000029204.57846.7d

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Menezes MC, Paes Leme AF, Melo RL, Silva CA, Della Casa M, Bruni FM, Lima C, Lopes-Ferreira M, Camargo AC, Fox JW, Serrano SM (2008) Activation of leukocyte rolling by the cysteine-rich domain and the hyper-variable region of HF3, a snake venom hemorrhagic metalloproteinase. FEBS Lett 582:3915–3921. doi:10.1016/j.febslet.2008.10.034

    Article  CAS  PubMed  Google Scholar 

  • Menezes MC, de Oliveira AK, Melo RL, Lopes-Ferreira M, Rioli V, Balan A, Paes Leme AF, Serrano SM (2011) Disintegrin-like/cysteine-rich domains of the reprolysin HF3: site-directed mutagenesis reveals essential role of specific residues. Biochimie 93:345–351. doi:10.1016/j.biochi.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  • Moura-da-Silva AM, Butera D, Tanjoni I (2007) Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des 13(28):2893–2905. doi:10.2174/138161207782023711

    Article  CAS  PubMed  Google Scholar 

  • Moura-da-Silva AM, Serrano SMT, Fox JW, Gutiérrez JM (2009) Snake venom metalloproteinases: structure, function and effects on snake bite pathology. In: Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H (org) Animal toxins: state of the art. Perspectives in health and biotechnology, Editora UFMG, Belo Horizonte, pp 525–546

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494. doi:10.1074/jbc.274.31.21491

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AK, Paes Leme AF, Assakura MT, Menezes MC, Zelanis A, Tashima AK, Lopes-Ferreira M, Lima C, Camargo AC, Fox JW, Serrano SM (2009) Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon 53:797–801. doi:10.1016/j.toxicon.2009.02.019

    Article  CAS  Google Scholar 

  • Oliveira AK, Paes Leme AF, Asega AF, Camargo AC, Fox JW, Serrano SM (2010) New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases. Thromb Haemost 104(3):485–497. doi:10.1160/TH09-12-0855

    Article  CAS  PubMed  Google Scholar 

  • Portes-Junior JA, Yamanouye N, Carneiro SM, Knittel PS, Sant’Anna SS, Nogueira FC, Junqueira M, Magalhães GS, Domont GB, Moura-da-Silva AM (2014) Unraveling the processing and activation of snake venom metalloproteinases. J Proteome Res 13:3338–3348. doi:10.1021/pr500185a

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum G, Cooperman BS (2014) Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 588:261–268. doi:10.1016/j.febslet.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  • Rucavado A, Lomonte B, Ovadia M, Gutiérrez JM (1995) Local tissue damage induced by BaP1, a metalloproteinase isolated from Bothrops asper (Terciopelo) snake venom. Exp Mol Pathol 63(3):186–199. doi:10.1006/exmp.1995.1042

    Article  CAS  PubMed  Google Scholar 

  • Serrano SMT, Jia L-G, Wang D, Shannon JD, Fox JW (2005) Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. Biochem J 391:69–76. doi:10.1042/BJ20050483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano SMT, Kim J, Wang D, Dragulev B, Shannon JD, Mann HH, Veit G, Wagener R, Koch M, Fox JW (2006) The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem 281:39746–39756. doi:10.1074/jbc.M604855200

    Article  CAS  PubMed  Google Scholar 

  • Serrano SMT, Wang D, Shannon JD, Pinto AFM, Polanowska-Grabowska RK, Fox JW (2007) Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation. FEBS J 274:3611–3621. doi:10.1111/j.1742-4658.2007.05895.x

    Article  CAS  PubMed  Google Scholar 

  • Serrano SMT, Oliveira AK, Menezes MC, Zelanis A (2014) The proteinase-rich proteome of Bothrops jararaca venom. Toxin Rev 33:169–184

    Article  CAS  Google Scholar 

  • Silva CA, Zuliani JP, Assakura MT, Mentele R, Camargo AC, Teixeira CF, Serrano SM (2004) Activation of alpha(M)beta(2)-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun 322:950–956. doi:10.1016/j.bbrc.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  • Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth FX, McKay DB, Bode W (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4(5):823–840. doi:10.1002/pro.5560040502

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanjoni I, Evangelista K, Della-Casa MS, Butera D, Magalhães GS, Baldo C, Clissa PB, Fernandes I, Eble J, Moura-da-Silva AM (2010) Different regions of the class P-III snake venom metalloproteinase jararhagin are involved in binding to alpha2beta1 integrin and collagen. Toxicon 55:1093–1099. doi:10.1016/j.toxicon.2009.12.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work used the Cell Free Expression platform (Lionel Imbert) of the Grenoble center Tutorial (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with media from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank Ismael Feitosa Lima for excellent technical help. This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (1214/2011, 7737/14-9), Fundação de Amparo à Pesquisa do Estado de São Paulo (2013/07467-1) and from a dedicated grant from the Direction des Sciences du Vivant of the CEA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Vernet or Solange M. T. Serrano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, M.C., Imbert, L., Kitano, E.S. et al. Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system. Amino Acids 48, 2205–2214 (2016). https://doi.org/10.1007/s00726-016-2255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2255-7

Keywords

Navigation