Abstract
Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of l-Lys and l-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures.
This is a preview of subscription content, access via your institution.








References
Almaaytah A, Tarazi S, Abu-Alhaijaa A, et al. (2014) Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals (Basel, Switzerland) 7:502–16. doi: 10.3390/ph7050502
Alvarez CA, Guzmán F, Cárdenas C et al (2014) Antimicrobial activity of trout hepcidin. Fish Shellfish Immunol 41:1–9. doi:10.1016/j.fsi.2014.04.013
Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. doi:10.1038/nrmicro2319
Bienkiewicz EA, Moon Woody A, Woody RW (2000) Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J Mol Biol 297:119–133. doi:10.1006/jmbi.2000.3545
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
Bourbon C, Bry C, Roggemans C et al (2008) Use of a real-time polymerase chain reaction thermocycler to study bacterial cell permeabilization by antimicrobial peptides. Anal Biochem 381:279–281. doi:10.1016/j.ab.2008.07.005
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098
Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66:571–591. doi:10.1038/ja.2013.86
Carvajal-Rondanelli PA, Marshall SH, Guzman F (2011) Antifreeze glycoprotein agents: structural requirements for activity. J Sci Food Agric 91:2507–2510. doi:10.1002/jsfa.4473
Cirac AD, Moiset G, Mika JT et al (2011) The molecular basis for antimicrobial activity of pore-forming cyclic peptides. Biophys J 100:2422–2431. doi:10.1016/j.bpj.2011.03.057
Drake AF, Siligardi G, Gibbons WA (1988) Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(l-lysine) and the implications for protein folding and denaturation studies. Biophys Chem 31:143–146
Ganz T (2003) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43:300–304. doi:10.1093/icb/43.2.300
Gopal R, Park S-C, Ha K-J et al (2009) Effect of leucine and lysine substitution on the antimicrobial activity and evaluation of the mechanism of the HPA3NT3 analog peptide. J Pept Sci 15:589–594. doi:10.1002/psc.1155
Guilhelmelli F, Vilela N, Albuquerque P et al (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353. doi:10.3389/fmicb.2013.00353
Guralp SA, Murgha YE, Rouillard J-M, Gulari E (2013) From design to screening: a new antimicrobial peptide discovery pipeline. PLoS One 8:e59305. doi:10.1371/journal.pone.0059305
Guzmán F, Marshall S, Ojeda C et al (2013) Inhibitory effect of short cationic homopeptides against gram-positive bacteria. J Pept Sci 19:792–800. doi:10.1002/psc.2578
Hocquellet A, Senechal C, Garbay B (2012) Peptides importance of the disulfide bridges in the antibacterial activity of human hepcidin. Peptides 36:303–307. doi:10.1016/j.peptides.2012.06.001
Hope MJ, Bally MB, Webb G et al (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim et Biophys Acta BBA Biomembr 812:55–65
Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci 82:5131–5135. doi:10.1073/pnas.82.15.5131
Jofré C, Guzmán F, Cárdenas C et al (2011) A natural peptide and its variants derived from the processing of infectious pancreatic necrosis virus (IPNV) displaying enhanced antimicrobial activity: a novel alternative for the control of bacterial diseases. Peptides 32:852–858. doi:10.1016/j.peptides.2011.01.026
Jorda J, Kajava AV (2010) Protein homorepeats sequences, structures, evolution, and functions. Adv Protein Chem Struct Biol 79:59–88. doi:10.1016/S1876-1623(10)79002-7
Kaminski HM, Feix JB (2011) Effects of d-lysine substitutions on the activity and selectivity of antimicrobial peptide CM15. Polymers 3:2088–2106. doi:10.3390/polym3042088
Kragol G, Lovas S, Varadi G et al (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026
Lee J-K, Park SC, Hahm KS, Park Y (2013) Antimicrobial HPA3NT3 peptide analogs: placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. Biochim Biophys Acta 1828:443–454. doi:10.1016/j.bbamem.2012.09.005
Li W-F, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359. doi:10.1016/j.peptides.2006.03.016
Mihajlovic M, Lazaridis T (2012) Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta 1818:1274–1283. doi:10.1016/j.bbamem.2012.01.016
Murillo LA, Lan CY, Agabian NM et al (2007) Fungicidal activity of a phospholipase-A2-derived synthetic peptide variant against Candida albicans. Rev Esp de Quimioter 3:330–333
Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276:6483–6496. doi:10.1111/j.1742-4658.2009.07359.x
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE (2011) Antimicrobial peptides: the mode of action and perspectives of practical application. Biochem (Moscow) Suppl Ser B Biomed Chem 5:95–102. doi:10.1134/S1990750811020120
Páramo L, Lomonte B, Pizarro-Cerdá J et al (1998) Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom–synthetic Lys49 myotoxin II-(115–129)-peptide identifies its bactericidal region. FEBS J 253:452–461. doi:10.1046/j.1432-1327.1998.2530452.x
Powers J-PS, Tan A, Ramamoorthy A, Hancock REW (2005) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44:15504–15513. doi:10.1021/bi051302m
Rucker AL, Creamer TP (2002) Polyproline II helical structure in protein unfolded states : lysine peptides revisited. Protein Sci 11:980–985. doi:10.1110/ps.4550102
Ruzza P, Biondi B, Marchiani A et al (2010) Cell-penetrating peptides: a comparative study on lipid affinity and cargo delivery properties. Pharmaceuticals 3:1045–1062. doi:10.3390/ph3041045
Sato H, Feix JB (2008) Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrob Agents Chemother 52:4463–4465. doi:10.1128/AAC.00810-08
Segrest JP, De Loof H, Dohlman JG et al (1990) Amphipathic helix motif: classes and properties. Proteins 8:103–117. doi:10.1002/prot.34008020
Tani A, Lee S, Oishi O et al (1995) Interaction of the fragments characteristic of bactenecin 7 with phospholipid bilayers and their antimicrobial activity. J Biochem 117:560–565
Tiffany ML, Krimm S (1972) Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 11:2309–2316. doi:10.1002/bip.1972.360111109
Toke O, Maloy WL, Kim SJ et al (2004) Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR. Biophys J 87:662–674. doi:10.1529/biophysj.103.032706
Toumadje A, Johnson WC (1995) Systemin has the characteristics of a poly(l-proline) II type helix. J Am Chem Soc 117:7023–7024. doi:10.1021/ja00131a034
Wadhwani P, Reichert J, Bürck J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41:177–187. doi:10.1007/s00249-011-0771-7
Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55. doi:10.1124/pr.55.1.2.27
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:10.1038/415389a
Acknowledgments
Work funded by Fondecyt, Chilean Grant 1140926.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest of any kind.
Additional information
Handling Editor: F. Erdmann.
Rights and permissions
About this article
Cite this article
Carvajal-Rondanelli, P., Aróstica, M., Marshall, S.H. et al. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria. Amino Acids 48, 1445–1456 (2016). https://doi.org/10.1007/s00726-016-2198-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-016-2198-z
Keywords
- Homopeptides
- Antimicrobial
- Membrane
- Arginine
- Lysine
- Gram-negative