Amino Acids

, Volume 49, Issue 3, pp 567–583 | Cite as

A fluorescence anisotropy-based assay for determining the activity of tissue transglutaminase

  • Christoph Hauser
  • Robert Wodtke
  • Reik Löser
  • Markus Pietsch
Original Article


Tissue transglutaminase (TGase 2) is the most abundantly expressed enzyme of the transglutaminase family and involved in a large variety of pathological processes, such as neurodegenerative diseases, disorders related to autoimmunity and inflammation as well as tumor growth, progression and metastasis. As a result, TGase 2 represents an attractive target for drug discovery and development, which requires assays that allow for the characterization of modulating agents and are appropriate for high-throughput screening. Herein, we report a fluorescence anisotropy-based approach for the determination of TGase 2’s transamidase activity, following the time-dependent increase in fluorescence anisotropy due to the enzyme-catalyzed incorporation of fluorescein‐ and rhodamine B‐conjugated cadaverines 13 (acyl acceptor substrates) into N,N-dimethylated casein (acyl donor substrate). These cadaverine derivatives 13 were obtained by solid‐phase synthesis. To allow efficient conjugation of the rhodamine B moiety, different linkers providing secondary amine functions, such as sarcosyl and isonipecotyl, were introduced between the cadaverine and xanthenyl entities in compounds 2 and 3, respectively, with acyl acceptor 3 showing the most optimal substrate properties of the compounds investigated. The assay was validated for the search of both irreversible and reversible TGase 2 inhibitors using the inactivators iodoacetamide and a recently published l‐lysine-derived acrylamide and the allosteric binder GTP, respectively. In addition, the fluorescence anisotropy-based method was proven to be suitable for high-throughput screening (Z′ factor of 0.86) and represents a non-radioactive and highly sensitive assay for determining the active TGase 2 concentration.


Active-site titration Cadaverine Enzyme inhibition Fluorescent labeling Transglutaminases Xanthene dyes 



Analysis of variance




Blue fluorescent protein


2-Chlorotrityl chloride




N,N-Dimethylated casein




Dimethyl sulfoxide




Ethylenediaminetetraacetic acid


Electrospray ionization mass spectrometry


Theoretical total enzyme concentration


Fluorescence anisotropy






Förster resonance energy transfer


Green fluorescent protein


Guanosine 5′-[β,γ-imido]triphosphate


Guinea pig


Guanosine triphosphate


1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate


(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid


High-throughput screening




(S)-tert-butyl 6-amino-1-(2-(5-(dimethylamino)naphthalene-1-sulfonamido) ethylamino)-1-oxohexan-2-ylcarbamate (Boc-Lys-en-dansyl)




3-(N-Morpholino)propanesulfonic acid


Nuclear magnetic resonance




Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate


Relative fluorescence units


Reversed-phase high-pressure liquid chromatography




Standard deviation


Standard error of the mean


25 kDa synaptosome-associated protein




2-[[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid


Trifluoroacetic acid









The authors thank Martin Lohse (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research) for assisting in the synthesis of compound 3. C. H. and M. P. are grateful for support to the Graduate Program in Pharmacology and Experimental Therapeutics of the University of Cologne and the Bayer Health Care AG (Project No. O23). C. H. acknowledges financial support by the Friedrich-Naumann-Stiftung für die Freiheit (ST 6479/P 622). Partial financial support by the Helmholtz Portfolio Topic “Technologie und Medizin—Multimodale Bildgebung zur Aufklärung des in vivo-Verhaltens von polymeren Biomaterialien” (R. W. and R. L.) and by the Fonds der Chemischen Industrie (R. L.) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

Funding by the Bayer Health Care AG to C. H. and M. P. has been received via the University of Cologne without any economic obligation. R. W. and R. L. declare that they have no conflict of interest.

Research involving human participants and/or animals and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors. Obtaining informed consent was, therefore, not necessary.

Supplementary material

726_2016_2192_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1135 kb)


  1. Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea-pig liver transglutaminase—role of GTP and calcium-ions in modulating activity. J Biol Chem 262(4):1901–1906PubMedGoogle Scholar
  2. Adamczyk M, Grote J (2000) Efficient synthesis of rhodamine conjugates through the 2′-position. Bioorg Med Chem Lett 10(14):1539–1541PubMedCrossRefGoogle Scholar
  3. Agnihotri N, Kumar S, Mehta K (2013) Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res 15(1):202PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anthoni U, Christophersen C, Nielsen PH, Puschl A, Schaumburg K (1995) Structure of red and orange fluorescein. Struct Chem 6(3):161–165CrossRefGoogle Scholar
  5. Badarau E, Collighan RJ, Griffin M (2013) Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 44(1):119–127PubMedCrossRefGoogle Scholar
  6. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38(8):2410–2433PubMedCrossRefGoogle Scholar
  7. Beninati S, Facchiano F, Piacentini M (2013) Transglutaminases: future perspectives. Amino Acids 44(1):1–9PubMedCrossRefGoogle Scholar
  8. Bernecker A, Wieneke R, Riedel R, Seibt M, Geyer A, Steinem C (2010) Tailored synthetic polyamines for controlled biomimetic silica formation. J Am Chem Soc 132(3):1023–1031PubMedCrossRefGoogle Scholar
  9. Blommel PG, Fox BG (2005) Fluorescence anisotropy assay for proteolysis of specifically labeled fusion proteins. Anal Biochem 336(1):75–86PubMedCrossRefGoogle Scholar
  10. Brauch S, Henze M, Osswald B, Naumann K, Wessjohann LA, van Berkel SS, Westermann B (2012) Fast and efficient MCR-based synthesis of clickable rhodamine tags for protein profiling. Org Biomol Chem 10(5):958–965PubMedCrossRefGoogle Scholar
  11. Case A, Stein RL (2003) Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Biochemistry 42(31):9466–9481PubMedCrossRefGoogle Scholar
  12. Case A, Stein RL (2007) Kinetic analysis of the interaction of tissue transglutaminase with a nonpeptidic slow-binding inhibitor. Biochemistry 46(4):1106–1115PubMedCrossRefGoogle Scholar
  13. Case A, Ni J, Yeh LA, Stein RL (2005) Development of a mechanism-based assay for tissue transglutaminase—results of a high-throughput screen and discovery of inhibitors. Anal Biochem 338(2):237–244PubMedCrossRefGoogle Scholar
  14. Chabot N, Moreau S, Mulani A, Moreau P, Keillor JW (2010) Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. Chem Biol 17(10):1143–1150PubMedCrossRefGoogle Scholar
  15. Chang SK, Chung SI (1986) Cellular transglutaminase. The particulate-associated transglutaminase from chondrosarcoma and liver: partial purification and characterization. J Biol Chem 261(18):8112–8121PubMedGoogle Scholar
  16. Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475PubMedCrossRefGoogle Scholar
  17. Cleemann F, Karuso P (2008) Fluorescence anisotropy assay for the traceless kinetic analysis of protein digestion. Anal Chem 80(11):4170–4174PubMedCrossRefGoogle Scholar
  18. Cobas C, Dominguez S, Larin N, Iglesias I, Geada C, Seoane F, Sordo M, Monje P, Fraga S, Cobas R, Peng C, Garcia JA, Goebel M, Vaz E (2010) MestReNova 6.1.1-6384. Mestrelab Research S.L., Bajo, Santiago de Compostela, SpainGoogle Scholar
  19. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York, pp 109–145CrossRefGoogle Scholar
  20. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Methods of biochemical analysis, vol 46. Wiley, Hoboken, pp 72, 115–117Google Scholar
  21. Dafik L, Khosla C (2011) Dihydroisoxazole analogs for labeling and visualization of catalytically active transglutaminase 2. Chem Biol 18(1):58–66PubMedPubMedCentralCrossRefGoogle Scholar
  22. de Macédo P, Marrano C, Keillor JW (2000) A direct continuous spectrophotometric assay for transglutaminase activity. Anal Biochem 285(1):16–20PubMedCrossRefGoogle Scholar
  23. Egner BJ, Cardno M, Bradley M (1995) Linkers for combinatorial chemistry and reaction analysis using solid phase in situ mass spectrometry. J Chem Soc Chem Commun 21:2163–2164CrossRefGoogle Scholar
  24. Folk JE (1982) The trimethylacetyl transglutaminase complex. Method Enzymol 87:36–42CrossRefGoogle Scholar
  25. Folk JE, Cole PW (1966a) Identification of a functional cysteine essential for the activity of guinea pig liver transglutaminase. J Biol Chem 241(13):3238–3240PubMedGoogle Scholar
  26. Folk JE, Cole PW (1966b) Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of enzyme—identification of a functional cysteine essential for activity. J Biol Chem 241(23):5518–5525PubMedGoogle Scholar
  27. Folk JE, Cole PW (1966c) Transglutaminase: mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim Biophys Acta 122(2):244–264PubMedCrossRefGoogle Scholar
  28. Folk JE, Gross M (1971) Mechanism of action of guinea pig liver transglutaminase. VIII. Active site studies with “reporter” group-labeled halomethyl ketones. J Biol Chem 246(21):6683–6691PubMedGoogle Scholar
  29. Folk JE, Cole PW, Mullooly JP (1967) Mechanism of action of guinea pig liver transglutaminase. IV. The trimethylacyl enzyme. J Biol Chem 242(19):4329–4333PubMedGoogle Scholar
  30. Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33(6):166–175CrossRefGoogle Scholar
  31. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys (Berlin) 2(1–2):55–75CrossRefGoogle Scholar
  32. Förster T (2012) Energy migration and fluorescence. J Biomed Opt 17(1):011002PubMedCrossRefGoogle Scholar
  33. Frank HG, Graf R (1992) Interference of substrate quenching with the kinetics of placental peptidases. Biol Chem Hoppe Seyler 373(10):1031–1038PubMedCrossRefGoogle Scholar
  34. Fürniss D, Mack T, Hahn F, Vollrath SB, Koroniak K, Schepers U, Bräse S (2013) Peptoids and polyamines going sweet: modular synthesis of glycosylated peptoids and polyamines using click chemistry. Beilstein J Org Chem 9:56–63PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gaviola E, Pringsheim P (1924) Über den Einfluß der Konzentration auf die Polarisation der Fluoreszenz von Farbstofflösungen. Z Phys 24(1):24–36CrossRefGoogle Scholar
  36. Gilmore MA, Williams D, Okawa Y, Holguin B, James NG, Ross JA, Aoki KR, Jameson DM, Steward LE (2011) Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity. Anal Biochem 413(1):36–42PubMedCrossRefGoogle Scholar
  37. Gomes J, Huber N, Grunau A, Eberl L, Gademann K (2013) Fluorescent labeling agents for quorum-sensing receptors (FLAQS) in live cells. Chem Eur J 19(30):9766–9770PubMedCrossRefGoogle Scholar
  38. Gray AC, Garle MJ, Clothier RH (1999) Fluorescein cadaverine incorporation as a novel technique for the characterization of terminal differentiation in keratinocytes. Toxicol In Vitro 13(4–5):773–778PubMedCrossRefGoogle Scholar
  39. Grimm JB, Heckman LM, Lavis LD (2013) The chemistry of small-molecule fluorogenic probes. Prog Mol Biol Transl Sci 113:1–34PubMedCrossRefGoogle Scholar
  40. Gross M, Folk JE (1973) Mapping of the active sites of transglutaminases. I. Activity of the guinea pig liver enzyme toward aliphatic amides. J Biol Chem 248(4):1301–1306PubMedGoogle Scholar
  41. Hausch F, Halttunen T, Maki M, Khosla C (2003) Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol 10(3):225–231PubMedCrossRefGoogle Scholar
  42. Ientile R, Curro M, Caccamo D (2015) Transglutaminase 2 and neuroinflammation. Amino Acids 47(1):19–26PubMedCrossRefGoogle Scholar
  43. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jameson DM, Seifried SE (1999) Quantification of protein–protein interactions using fluorescence polarization. Methods 19(2):222–233PubMedCrossRefGoogle Scholar
  45. Jang TH, Lee DS, Choi K, Jeong EM, Kim IG, Kim YW, Chun JN, Jeon JH, Park HH (2014) Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PLoS One 9(9):e107005PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jeon WM, Lee KN, Birckbichler PJ, Conway E, Patterson MK (1989) Colorimetric assay for cellular transglutaminase. Anal Biochem 182(1):170–175PubMedCrossRefGoogle Scholar
  47. Jeong JM, Murthy SN, Radek JT, Lorand L (1995) The fibronectin-binding domain of transglutaminase. J Biol Chem 270(10):5654–5658PubMedCrossRefGoogle Scholar
  48. Johnson TS, Scholfield CI, Parry J, Griffin M (1998) Induction of tissue transglutaminase by dexamethasone: its correlation to receptor number and transglutaminase-mediated cell death in a series of malignant hamster fibrosarcomas. Biochem J 331(1):105–112PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kanchan K, Fuxreiter M, Fésüs L (2015) Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72(16):3009–3035PubMedCrossRefGoogle Scholar
  50. Keillor JW, Clouthier CM, Apperley KYP, Akbar A, Mulani A (2014) Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 57:186–197PubMedCrossRefGoogle Scholar
  51. Keillor JW, Apperley KY, Akbar A (2015) Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 36(1):32–40PubMedCrossRefGoogle Scholar
  52. Kenniston JA, Conley GP, Sexton DJ, Nixon AE (2013) A homogeneous fluorescence anisotropy assay for measuring transglutaminase 2 activity. Anal Biochem 436(1):13–15PubMedCrossRefGoogle Scholar
  53. Kim SY, Kim IG, Chung SI, Steinert PM (1994) The structure of the transglutaminase 1 enzyme. Deletion cloning reveals domains that regulate its specific activity and substrate specificity. J Biol Chem 269(45):27979–27986PubMedGoogle Scholar
  54. Klöck C, Jin X, Choi KH, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH (2011) Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 21(9):2692–2696PubMedCrossRefGoogle Scholar
  55. Kolmakov K, Wurm CA, Hennig R, Rapp E, Jakobs S, Belov VN, Hell SW (2012) Red-emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy. Chem Eur J 18(41):12986–12998PubMedCrossRefGoogle Scholar
  56. Kongsbak L, Jorgensen KS, Valbjorn J, Jorgensen CT, Husum TL, Ernst S, Moller S (1999) A fluorescence polarization screening method. Denmark Patent WO9945143 (A2), 19990910Google Scholar
  57. Krippendorff B, Neuhaus R, Lienau P, Reichel A, Huisinga W (2009) Mechanism-based inhibition: deriving K I and k inact directly from time-dependent IC50 values. J Biomol Screen 14(8):913–923PubMedCrossRefGoogle Scholar
  58. Kuramoto K, Yamasaki R, Shimizu Y, Tatsukawa H, Hitomi K (2013) Phage-displayed peptide library screening for preferred human substrate peptide sequences for transglutaminase 7. Arch Biochem Biophys 537(1):138–143PubMedCrossRefGoogle Scholar
  59. Lai TS, Slaughter TF, Peoples KA, Hettasch JM, Greenberg CS (1998) Regulation of human tissue transglutaminase function by magnesium–nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP. J Biol Chem 273(3):1776–1781PubMedCrossRefGoogle Scholar
  60. Lai TS, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 15(9):969–978PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lajemi M, Demignot S, Borge L, Thenet-Gauci S, Adolphe M (1997) The use of fluoresceincadaverine for detecting amine acceptor protein substrates accessible to active transglutaminase in living cells. Histochem J 29(8):593–606PubMedCrossRefGoogle Scholar
  62. Lavis LD, Raines RT (2014) Bright building blocks for chemical biology. ACS Chem Biol 9(4):855–866PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6(1):17–32PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lentini A, Abbruzzese A, Provenzano B, Tabolacci C, Beninati S (2013) Transglutaminases: key regulators of cancer metastasis. Amino Acids 44(1):25–32PubMedCrossRefGoogle Scholar
  65. Li Z, Mehdi S, Patel I, Kawooya J, Judkins M, Zhang W, Diener K, Lozada A, Dunnington D (2000) An ultra-high throughput screening approach for an adenine transferase using fluorescence polarization. J Biomol Screen 5(1):31–38PubMedCrossRefGoogle Scholar
  66. Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lorand L, Lockridge OM, Campbell LK, Myhrman R, Bruner-Lorand J (1971) Transamidating enzymes. II. Continuous fluorescent method suited for automating measurements of factor XIII in plasma. Anal Biochem 44(1):221–231PubMedCrossRefGoogle Scholar
  68. Lorand L, Parameswaran KN, Velasco PT, Hsu LKH, Siefring GE (1983) New colored and fluorescent amine substrates for activated fibrin stabilizing factor (factor XIIIa) and for transglutaminase. Anal Biochem 131(2):419–425PubMedCrossRefGoogle Scholar
  69. Mádi A, Kárpáti L, Kovács A, Muszbek L, Fésüs L (2005) High-throughput scintillation proximity assay for transglutaminase activity measurement. Anal Biochem 343(2):256–262PubMedCrossRefGoogle Scholar
  70. Murthy SN, Lorand L (2000) Nucleotide binding by the erythrocyte transglutaminase/Gh protein, probed with fluorescent analogs of GTP and GDP. Proc Natl Acad Sci USA 97(14):7744–7747PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nakayama GR, Bingham P, Tan D, Maegley KA (2006) A fluorescence polarization assay for screening inhibitors against the ribonuclease H activity of HIV-1 reverse transcriptase. Anal Biochem 351(2):260–265PubMedCrossRefGoogle Scholar
  72. Nguyen T, Francis MB (2003) Practical synthetic route to functionalized rhodamine dyes. Org Lett 5(18):3245–3248PubMedCrossRefGoogle Scholar
  73. Odii BO, Coussons P (2014) Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. Sci World J 2014:714561CrossRefGoogle Scholar
  74. Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5(5):297–306PubMedCrossRefGoogle Scholar
  75. Pardin C, Pelletier JN, Lubell WD, Keillor JW (2008) Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem 73(15):5766–5775PubMedCrossRefGoogle Scholar
  76. Pardin C, Roy I, Chica RA, Bonneil E, Thibault P, Lubell WD, Pelletier JN, Keillor JW (2009) Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 48(15):3346–3353PubMedCrossRefGoogle Scholar
  77. Perez Alea M, Kitamura M, Martin G, Thomas V, Hitomi K, El Alaoui S (2009) Development of an isoenzyme-specific colorimetric assay for tissue transglutaminase 2 cross-linking activity. Anal Biochem 389(2):150–156PubMedCrossRefGoogle Scholar
  78. Pheovilov PP, Sveshnikov BJ (1940) On the concentrational depolarization of the fluorescence dye-stuff solutions. J Phys USSR 3(6):493–505Google Scholar
  79. Pietsch M, Wodtke R, Pietzsch J, Löser R (2013) Tissue transglutaminase: an emerging target for therapy and imaging. Bioorg Med Chem Lett 23(24):6528–6543PubMedCrossRefGoogle Scholar
  80. Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327PubMedPubMedCentralCrossRefGoogle Scholar
  81. Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393PubMedCrossRefGoogle Scholar
  82. Prime ME, Andersen OA, Barker JJ, Brooks MA, Cheng RKY, Toogood-Johnson I, Courtney SM, Brookfield FA, Yarnold CJ, Marston RW, Johnson PD, Johnsen SF, Palfrey JJ, Vaidya D, Erfan S, Ichihara O, Felicetti B, Palan S, Pedret-Dunn A, Schaertl S, Sternberger I, Ebneth A, Scheel A, Winkler D, Toledo-Sherman L, Beconi M, Macdonald D, Munoz-Sanjuan I, Dominguez C, Wityak J (2012) Discovery and structure-activity relationship of potent and selective covalent inhibitors of transglutaminase 2 for Huntington’s disease. J Med Chem 55(3):1021–1046PubMedCrossRefGoogle Scholar
  83. Radek JT, Jeong JM, Murthy SN, Ingham KC, Lorand L (1993) Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci USA 90(8):3152–3156PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ramos SS, Vilhena AF, Santos L, Almeida P (2000) 1H and 13C NMR spectra of commercial rhodamine ester derivatives. Magn Reson Chem 38(6):475–478CrossRefGoogle Scholar
  85. Reindl W, Graber M, Strebhardt K, Berg T (2009) Development of high-throughput assays based on fluorescence polarization for inhibitors of the polo-box domains of polo-like kinases 2 and 3. Anal Biochem 395(2):189–194PubMedCrossRefGoogle Scholar
  86. Ross JA, Gilmore MA, Williams D, Aoki KR, Steward LE, Jameson DM (2011) Characterization of Förster resonance energy transfer in a botulinum neurotoxin protease assay. Anal Biochem 413(1):43–49PubMedCrossRefGoogle Scholar
  87. Rossi A, Catani MV, Candi E, Bernassola F, Puddu P, Melino G (2000) Nitric oxide inhibits cornified envelope formation in human keratinocytes by inactivating transglutaminases and activating protein 1. J Invest Dermatol 115(4):731–739PubMedCrossRefGoogle Scholar
  88. Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, Macdonald D (2010) A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen 15(5):478–487PubMedCrossRefGoogle Scholar
  89. Seebach D, Dubost E, Mathad RI, Jaun B, Limbach M, Löweneck M, Flögel O, Gardiner J, Capone S, Beck AK, Widmer H, Langenegger D, Monna D, Hoyer D (2008) New open-chain and cyclic tetrapeptides, consisting of α-, β2-, and β3-amino-acid residues, as somatostatin mimics—a survey. Helv Chim Acta 91(9):1736–1786CrossRefGoogle Scholar
  90. Sem DS, McNeeley PA (1999) Application of fluorescence polarization to the steady-state enzyme kinetic analysis of calpain II. FEBS Lett 443(1):17–19PubMedCrossRefGoogle Scholar
  91. Shapiro AB, Gao N, Gu RF, Thresher J (2014) Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants. Anal Biochem 463:15–22PubMedCrossRefGoogle Scholar
  92. Shoichet BK (2006) Interpreting steep dose-response curves in early inhibitor discovery. J Med Chem 49(25):7274–7277PubMedCrossRefGoogle Scholar
  93. Simeonov A, Bi X, Nikiforov TT (2002) Enzyme assays by fluorescence polarization in the presence of polyarginine: study of kinase, phosphatase, and protease reactions. Anal Biochem 304(2):193–199PubMedCrossRefGoogle Scholar
  94. Simeonov A, Jadhav A, Thomas CJ, Wang Y, Huang R, Southall NT, Shinn P, Smith J, Austin CP, Auld DS, Inglese J (2008) Fluorescence spectroscopic profiling of compound libraries. J Med Chem 51(8):2363–2371PubMedCrossRefGoogle Scholar
  95. Slaughter TF, Achyuthan KE, Lai TS, Greenberg CS (1992) A microtiter plate transglutaminase assay utilizing 5-(biotinamido)pentylamine as substrate. Anal Biochem 205(1):166–171PubMedCrossRefGoogle Scholar
  96. Stein RL (2011) Kinetics of enzyme action. Essential principles for drug hunters, 1st edn. Wiley, Hoboken, p 138CrossRefGoogle Scholar
  97. Tong L, Chen Z, De Paiva CS, Beuerman R, Li DQ, Pflugfelder SC (2006) Transglutaminase participates in UVB-induced cell death pathways in human corneal epithelial cells. Invest Ophth Vis Sci 47(10):4295–4301CrossRefGoogle Scholar
  98. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, Weinheim, p 245CrossRefGoogle Scholar
  99. van der Meer BW (2014) Förster Theory. In: Medintz I, Hildebrandt N (eds) FRET—Förster resonance energy transfer: from theory to applications, 1st edn. Wiley, Weinheim, pp 23–62Google Scholar
  100. van Geel R, Debets MF, Lowik DWPM, Pruijn GJM, Boelens WC (2012) Detection of transglutaminase activity using click chemistry. Amino Acids 43(3):1251–1263PubMedCrossRefGoogle Scholar
  101. Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239(1):119–138PubMedCrossRefGoogle Scholar
  102. Wityak J, Prime ME, Brookfield FA, Courtney SM, Erfan S, Johnsen S, Johnson PD, Li M, Marston RW, Reed L, Vaidya D, Schaertl S, Pedret-Dunn A, Beconi M, Macdonald D, Muñoz-Sanjuan I, Dominguez C (2012) SAR development of lysine-based irreversible inhibitors of transglutaminase 2 for Huntington’s disease. ACS Med Chem Lett 3(12):1024–1028PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wu YW, Tsai YH (2006) A rapid transglutaminase assay for high-throughput screening applications. J Biomol Screen 11(7):836–843PubMedCrossRefGoogle Scholar
  104. Yamada K, Meguro T (1977) New assay method for factor XIII using a fluorescence polarization analyzer, based on change in rotary Brownian-motion. Thromb Res 11(5):557–566PubMedCrossRefGoogle Scholar
  105. Yamane A, Fukui M, Sugimura Y, Itoh M, Alea MP, Thomas V, El Alaoui S, Akiyama M, Hitomi K (2010) Identification of a preferred substrate peptide for transglutaminase 3 and detection of in situ activity in skin and hair follicles. FEBS J 277(17):3564–3574PubMedCrossRefGoogle Scholar
  106. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Center of Pharmacology, Medical FacultyUniversity of CologneCologneGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
  3. 3.Department of Chemistry and Food ChemistryTechnical University DresdenDresdenGermany

Personalised recommendations