Skip to main content

Advertisement

Log in

Creatine for neuroprotection in neurodegenerative disease: end of story?

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlskog JE (2007) I can’t get no satisfaction: still no neuroprotection for Parkinson disease. Neurology 69(15):1476–1477. doi:10.1212/01.wnl.0000277645.60799.0e

    Article  PubMed  Google Scholar 

  • Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF (2012) Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav 101(4):588–601. doi:10.1016/j.pbb.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling G, Borchelt DR, Hersch SM, Ross CA, Beal MF (2001a) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis 8(3):479–491

    Article  CAS  PubMed  Google Scholar 

  • Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R, Beal MF (2001b) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77(2):383–390

    Article  CAS  PubMed  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343. doi:10.1016/j.brainresbull.2008.02.035

    Article  CAS  PubMed  Google Scholar 

  • Atassi N, Ratai EM, Greenblatt DJ, Pulley D, Zhao Y, Bombardier J, Wallace S, Eckenrode J, Cudkowicz M, Dibernardo A (2010) A phase I, pharmacokinetic, dosage escalation study of creatine monohydrate in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11(6):508–513. doi:10.3109/17482961003797130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrino M, Lensman M, Parodi M, Perasso L, Rebaudo R, Melani R, Polenov S, Cupello A (2002) Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23(1–3):221–229. doi:10.1007/s00726-001-0133-3

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40(5):1305–1313. doi:10.1007/s00726-011-0851-0

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13(10):4181–4192

    CAS  PubMed  Google Scholar 

  • Bender A, Auer DP, Merl T, Reilmann R, Saemann P, Yassouridis A, Bender J, Weindl A, Dose M, Gasser T, Klopstock T (2005) Creatine supplementation lowers brain glutamate levels in Huntington’s disease. J Neurol 252(1):36–41. doi:10.1007/s00415-005-0595-4

    Article  CAS  PubMed  Google Scholar 

  • Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Muller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67(7):1262–1264

    Article  CAS  PubMed  Google Scholar 

  • Bender A, Samtleben W, Elstner M, Klopstock T (2008) Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res 28(3):172–178. doi:10.1016/j.nutres.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Benton D, Donohoe R (2011) The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr 105(7):1100–1105. doi:10.1017/S0007114510004733

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  • Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Brew BJ (2007) Lost in translation: again, another failed neuroprotection trial. Neurology 69(13):1308–1309. doi:10.1212/01.wnl.0000277530.05450.ff

    Article  PubMed  Google Scholar 

  • Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2(11):806–819. doi:10.1038/35097565

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2007) Clinical research. Testing a novel strategy against Parkinson’s disease. Science 315(5820):1778

    Article  CAS  PubMed  Google Scholar 

  • Dedeoglu A, Kubilus JK, Yang L, Ferrante KL, Hersch SM, Beal MF, Ferrante RJ (2003) Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J Neurochem 85(6):1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ergorul C, Levin LA (2013) Solving the lost in translation problem: improving the effectiveness of translational research. Curr Opin Pharmacol 13(1):108–114. doi:10.1016/j.coph.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20(12):4389–4397

    CAS  PubMed  Google Scholar 

  • Genius J, Geiger J, Bender A, Moller HJ, Klopstock T, Rujescu D (2012) Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One 7(2):e30554. doi:10.1371/journal.pone.0030554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeneveld GJ, Veldink JH, van der Tweel I, Kalmijn S, Beijer C, de Visser M, Wokke JH, Franssen H, van den Berg LH (2003) A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol 53(4):437–445. doi:10.1002/ana.10554

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43(2):519–529. doi:10.1007/s00726-011-1132-7

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hemmer W, Wallimann T (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15(3–5):249–260

    CAS  PubMed  Google Scholar 

  • Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, Como P, Zimmerman C, Lin M, Zhang L, Ulug AM, Beal MF, Matson W, Bogdanov M, Ebbel E, Zaleta A, Kaneko Y, Jenkins B, Hevelone N, Zhang H, Yu H, Schoenfeld D, Ferrante R, Rosas HD (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology 66(2):250–252. doi:10.1212/01.wnl.0000194318.74946.b6

    Article  CAS  PubMed  Google Scholar 

  • Hervias I, Beal MF, Manfredi G (2006) Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 33(5):598–608. doi:10.1002/mus.20489

    Article  CAS  PubMed  Google Scholar 

  • Kieburtz K, Tilley BC, Elm JJ, Babcock D, Hauser R, Ross GW, Augustine AH, Augustine EU, Aminoff MJ, Bodis-Wollner IG, Boyd J, Cambi F, Chou K, Christine CW, Cines M, Dahodwala N, Derwent L, Dewey RB Jr, Hawthorne K, Houghton DJ, Kamp C, Leehey M, Lew MF, Liang GS, Luo ST, Mari Z, Morgan JC, Parashos S, Perez A, Petrovitch H, Rajan S, Reichwein S, Roth JT, Schneider JS, Shannon KM, Simon DK, Simuni T, Singer C, Sudarsky L, Tanner CM, Umeh CC, Williams K, Wills AM (2015) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313(6):584–593. doi:10.1001/jama.2015.120

    Article  PubMed  Google Scholar 

  • Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington′s disease. Hum Mol Genet 19(20):3919–3935. doi:10.1093/hmg/ddq306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347–350

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Gardian G, Calingasan NY, Yang L, Beal MF (2003) Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Mol Neurosci 21(3):191–198

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF (2004) Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 88(3):576–582

    Article  CAS  PubMed  Google Scholar 

  • Klopstock T, Elstner M, Bender A (2011) Creatine in mouse models of neurodegeneration and aging. Amino Acids 40(5):1297–1303. doi:10.1007/s00726-011-0850-1

    Article  CAS  PubMed  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52. doi:10.1006/bbrc.2001.6164

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang P, Yu Z, Cong Y, Sun H, Zhang J, Zhang J, Sun C, Zhang Y, Ju X (2015) The effect of creatine and coenzyme q10 combination therapy on mild cognitive impairment in Parkinson’s disease. Eur Neurol 73(3–4):205–211. doi:10.1159/000377676

    Article  CAS  PubMed  Google Scholar 

  • Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, Warner TT (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Ann Neurol 48(1):72–76

    Article  CAS  PubMed  Google Scholar 

  • Lowe MT, Faull RL, Christie DL, Waldvogel HJ (2015) Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol 523(5):699–725. doi:10.1002/cne.23667

    Article  CAS  PubMed  Google Scholar 

  • Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, Cohen BM, Renshaw PF (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Mak CS, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MT, Birch NP, Faull RL, Christie DL (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585. doi:10.1016/j.neuroscience.2009.06.065

    Article  CAS  PubMed  Google Scholar 

  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18(1):156–163

    CAS  PubMed  Google Scholar 

  • Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149. doi:10.1006/exnr.1999.7049

    Article  CAS  PubMed  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2015) Reproducibility issues in research with animals and animal models: workshop in Brief. The National Academies Press, Washington, DC, 1–8. ISBN 978-0-309-38017-1

  • NINDS NET-PD Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66(5):664–671

    Article  Google Scholar 

  • O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414(2):253–257

    Article  PubMed  Google Scholar 

  • Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease—2007. Mov Disord 22(Suppl 17):S335–S342

    Article  PubMed  Google Scholar 

  • Pastula DM, Moore DH, Bedlack RS (2012) Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 12:CD005225. doi:10.1002/14651858.CD005225.pub3

    PubMed  Google Scholar 

  • Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Lunardi G, Risso F, Pohvozcheva A, Leko M, Gandolfo C, Florio T, Cupello A, Burov S, Balestrino M (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33(5):765–775

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Adriano E, Ruggeri P, Burov SV, Gandolfo C, Balestrino M (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M (2013) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev 33(2):336–363. doi:10.1002/med.20255

    Article  CAS  PubMed  Google Scholar 

  • Peters OM, Ghasemi M, Brown RH Jr (2015) Emerging mechanisms of molecular pathology in ALS. J Clin Invest 125(5):1767–1779. doi:10.1172/JCI71601

    Article  PubMed  PubMed Central  Google Scholar 

  • Poortmans JR, Francaux M (2000) Adverse effects of creatine supplementation: fact or fiction? Sports Med 30(3):155–170

    Article  CAS  PubMed  Google Scholar 

  • Rosas HD, Doros G, Gevorkian S, Malarick K, Reuter M, Coutu JP, Triggs TD, Wilkens PJ, Matson W, Salat DH, Hersch SM (2014) Precrest: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82(10):850–857. doi:10.1212/wnl.0000000000000187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld J, King RM, Jackson CE, Bedlack RS, Barohn RJ, Dick A, Phillips LH, Chapin J, Gelinas DF, Lou JS (2008) Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler 9(5):266–272. doi:10.1080/17482960802028890

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J, Al-Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9(1):4–15. doi:10.1080/17482960701856300

    Article  CAS  PubMed  Google Scholar 

  • Shefner JM, Cudkowicz ME, Schoenfeld D, Conrad T, Taft J, Chilton M, Urbinelli L, Qureshi M, Zhang H, Pestronk A, Caress J, Donofrio P, Sorenson E, Bradley W, Lomen-Hoerth C, Pioro E, Rezania K, Ross M, Pascuzzi R, Heiman-Patterson T, Tandan R, Mitsumoto H, Rothstein J, Smith-Palmer T, MacDonald D, Burke D, NEALS Consortium (2004) A clinical trial of creatine in ALS. Neurology 63(9):1656–1661

    Article  CAS  PubMed  Google Scholar 

  • Smith RN, Agharkar AS, Gonzales EB (2014) A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 3:222. doi:10.12688/f1000research.5218.1

    PubMed  PubMed Central  Google Scholar 

  • Snow RJ, Turnbull J, da Silva S, Jiang F, Tarnopolsky MA (2003) Creatine supplementation and riluzole treatment provide similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience 119(3):661–667

    Article  CAS  PubMed  Google Scholar 

  • Stevens PR, Gawryluk JW, Hui L, Chen X, Geiger JD (2014) Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury. Curr HIV Res 12(6):378–387

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA (2010) Caffeine and creatine use in sport. Ann Nutr Metab 57(Suppl 2):1–8. doi:10.1159/000322696

    Article  CAS  PubMed  Google Scholar 

  • Thorsteinsdottir B, Grande JP, Garovic VD (2006) Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate. J Ren Nutr 16(4):341–345. doi:10.1053/j.jrn.2006.04.025

    Article  PubMed  Google Scholar 

  • Turner CE, Byblow WD, Gant N (2015) Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci 35(4):1773–1780. doi:10.1523/jneurosci.3113-14.2015

    Article  CAS  PubMed  Google Scholar 

  • Verbessem P, Lemiere J, Eijnde BO, Swinnen S, Vanhees L, Van Leemputte M, Hespel P, Dom R (2003) Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology 61(7):925–930

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296. doi:10.1007/s00726-011-0877-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14(6):1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Luo M, Luo H, Wan J (2014) Creatine for Parkinson’s disease. Cochrane Database Syst Rev 6:CD009646. doi:10.1111/j.1471-4159.2009.06074.x

    PubMed  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109(5):1427–1439. doi:10.1111/j.1471-4159.2009.06074.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazigi Solis M, de Salles Painelli V, Giannini Artioli G, Roschel H, Concepción Otaduy M, Gualano B (2014) Brain creatine depletion in vegetarians? A cross-sectional ¹H-magnetic resonance spectroscopy (¹H-MRS) study. Br J Nutr 111(7):1272–1274. doi:10.1017/S0007114513003802

    Article  PubMed  Google Scholar 

  • Zhang W, Narayanan M, Friedlander RM (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol 53(2):267–270. doi:10.1002/ana.10476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bender.

Ethics declarations

Conflict of interest

AB and TK were invited speakers with travel grants at creatine conferences, sponsored by one of the creatine manufacturers, Alzchem, Trostberg, Germany.

Ethical standard statement

This review article does not contain any studies with human participants performed by any of the authors.

Informed consent statement

The authors of this review article did not perform research on participants. Obtaining informed consent was therefore not applicable.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, A., Klopstock, T. Creatine for neuroprotection in neurodegenerative disease: end of story?. Amino Acids 48, 1929–1940 (2016). https://doi.org/10.1007/s00726-015-2165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2165-0

Keywords

Navigation