Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential

Abstract

Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Balamurugan M, Parthasarathi K, Cooper EL, Ranganathan LS (2009) Anti-inflammatory and antipyretic activities of earthworm extract—Lampito mauritii (Kinberg). J Ethnopharmacol 121:330–332

    CAS  Article  PubMed  Google Scholar 

  2. Banerjee R (2014) Introduction to the thematic minireview series on enzyme evolution. J Biol Chem 289(44):30196–30197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bilej M, Brys L, Beschin A et al (1995) Identification of a cytolytic protein in the coelomic fluid of Eisenia fetida earthworm. Immunol Lett 45:123–128

    CAS  Article  PubMed  Google Scholar 

  4. Bilej M, Prochazkova P et al (2010) Invertebrate immunity. Adv Exp Med Biol 708:66–79

    CAS  Article  PubMed  Google Scholar 

  5. Boehlein SK, Rosa-Rodriguez JG et al (1997) Catalytic activity of the N-terminal domain of Escherichia coli asparagine synthetase B can be reengineered by a single-point mutation. J Am Chem Soc 119:5785–5791

    CAS  Article  Google Scholar 

  6. Carbonell P, Faulon JL (2010) Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics 26(16):2012–2019

    CAS  Article  PubMed  Google Scholar 

  7. Cho JH, Park CB et al (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophy Acta 1408(1):67–76

    CAS  Article  Google Scholar 

  8. Cho IH, Choi ES et al (2004) Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J Biochem Mol Biol 37(2):199–205

    CAS  Article  PubMed  Google Scholar 

  9. Collen D, De Cock F, Lijnen HR (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase. II. Turnover of natural and recombinant urokinase in rabbits and squirrel monkeys. Thromb Haemost 52:24–26

    CAS  PubMed  Google Scholar 

  10. Cong Y, Liu Y, Chen JC (2000) Advance in lumbrokinase. Chin J Biochem Pharm 21:159–162

    Google Scholar 

  11. Cooper EL, Hrzenjak TM, Grdisa T (2004) Alternative sources of fibrinolytic, anti-coagulative, antimicrobial and anticancer molecules. Int J Immunopathol Pharmacol 17:237–244

    CAS  PubMed  Google Scholar 

  12. Copley SD (2015) An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 40(2):72–78. doi:10.1016/j.tibs.2014.12.004

    CAS  Article  PubMed  Google Scholar 

  13. Costa-Neto EM (2005) Animal-based medicines: biological prospection and the sustainable use of zoo therapeutic resources. An Acad Bras Cienc 77(1):33–43

    Article  PubMed  Google Scholar 

  14. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. doi:10.1002/biot.200600012

    CAS  Article  PubMed  Google Scholar 

  15. Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resistance. J Clin Oncol 4(2):244–257

    CAS  PubMed  Google Scholar 

  16. Fan Q, Cen W, Li L et al (2001) Some features of intestinal absorption of intact fibrinolytic enzyme III-1 from Lumbricus rubellus. Biochim Biophys Acta 1526:286–292

    CAS  Article  PubMed  Google Scholar 

  17. Giraldo J, Roche D et al (2006) The catalytic power of enzymes: conformational selection or transition state stabilization. FEBS Lett 580(9):2170–2177

    CAS  Article  PubMed  Google Scholar 

  18. Gore DR, Karha J, Gibson CM (2003) Safety and efficacy of tenecteplase in acute myocardial infraction. Expert Opin Pharmacother 4:791–798

    Article  Google Scholar 

  19. He DW, Zhou F (2005) Study on the anti-tumor effects of earthworm extract. J Yangtze Univ (Nat Sci Edit) 18:225–228

    Google Scholar 

  20. Hong C, Takahashi S, Imamura M et al (2007) Earthworm fibrinolytic enzyme- anti-tumor activity on human hepatoma cells in vitro and in vivo. Chin Med J 120(10):898–904

    Google Scholar 

  21. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Roy Soc Lond B 256:119–124

    CAS  Article  Google Scholar 

  22. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25(5):231–238

    CAS  Article  PubMed  Google Scholar 

  23. Ismail SA, Pulandiran K, Yegnanarayan R (1992) Anti-inflammatory activity of earthworm extracts. Soil Biol Biochem 24:1253–1254

    Article  Google Scholar 

  24. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    CAS  Article  PubMed  Google Scholar 

  25. Jeon OH, Moon WJ, Kim DS (1995) An anticoagulant/fibrinolytic protease from Lumbricus rubellus. J Biochem Mol Biol 28:138–1452

    CAS  Google Scholar 

  26. Ji H, Wang L, Bi H et al (2008) Mechanisms of lumbrokinase in protection of cerebral ischemia. Eur J Pharmacol 590:281–289

    CAS  Article  PubMed  Google Scholar 

  27. Jin L, Jin H, Zhang G, Xu G (2000) Changes in coagulation and tissue plasminogen activator after the treatment of cerebral infarction with lumbrokinase. Clin Hemorheol Microcirc 23:213–218

    CAS  PubMed  Google Scholar 

  28. Jost C, Nitsche C et al (2014) Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments. J Med Chem 57(18):7590–7599. doi:10.1021/jm5006918

    Article  PubMed  Google Scholar 

  29. Justicia C, Gabriel C, Planas AM (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through jak1 and stat3 in astrocytes. Glia 30:253–270

    CAS  Article  PubMed  Google Scholar 

  30. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    CAS  Article  PubMed  Google Scholar 

  31. Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10(5):498–508

    CAS  Article  PubMed  Google Scholar 

  32. Li YH, Zhang M, Wang JC, Zhang S, Liu JR, Zhang Q (2006) Effects of absorption enhancers on intestinal absorption of lumbrokinase. Yao Xue Xue Bao 41(10):939–944

    PubMed  Google Scholar 

  33. Madison EL, Coombs GS, Corey DR (1995) Substrate specificity of tissue type plasminogen activator. J Biol Chem 270(13):7558–7562

    CAS  Article  PubMed  Google Scholar 

  34. Mao S, Yan Z, Chen S (2000) Purification and kinetic characteristics of fibrinolytic enzymes from earthworm. J Wenzhou Med Coll 30:277–278

    Google Scholar 

  35. Michael JE, Benjamin FC (2006) Mechanism-based profiling of enzyme families. Chem Rev A23-T. 10.1021/cr050288g

  36. Mihara H, Sumi H, Akazawa K (1983) Fibrinolytic enzyme extracted from the earthworm. Thromb Haemost 50(3):258

    Google Scholar 

  37. Mihara H, Sumi H, Yoneta T et al (1991) A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 41(3):461–472

    CAS  Article  PubMed  Google Scholar 

  38. Mihara H, Nakajima N, Sumi H (1993) Characterization of protein fibrinolytic enzyme in earthworm Lumbricus rubellus. Biosci Biotech Biochem 57:1726–1731

    Article  Google Scholar 

  39. Murzin AG (1998) How far divergent evolution goes in proteins. Curr Opin Struct Biol 8:380–387

    CAS  Article  PubMed  Google Scholar 

  40. Nakajima N, Mihara H, Sumi H (1993) Characterization of potent fibrinolytic enzymes in earthworm Lumbricus rubellus. Biosci Biotech Biochem 57:1726–1730

    CAS  Article  Google Scholar 

  41. O`Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzyme activities. Chem Biol 6:R91–R105

    CAS  Article  Google Scholar 

  42. Pan R, Zhang ZJ, He RQ (2010) Earthworm protease. Appl Environ Soil Sci 2010:13. doi:10.1155/2010/294258 (article ID 294258)

    Article  Google Scholar 

  43. Pan R, Zhou Y, He HJ, He RQ (2011) An enzyme from the earthworm Eisenia fetida is not only a protease but also a deoxyribonuclease. Biochem Biophys Res Commun 407(1):113–117. doi:10.1016/j.bbrc.2011.02.120

    CAS  Article  PubMed  Google Scholar 

  44. Pandya C, Farelli JD, Dunaway-Mariano D et al (2014) Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 289(44):30229–30236. doi:10.1074/jbc.R114.572990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Park SY, Kye KC, Lee M (1989) Fibrinolytic activity of the earthworm extract. Thromb Haemosta 62:545–550

    Google Scholar 

  46. Perona JJ, Craik CG (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Roch P, Ville P, Cooper EL (1998) Characterization of a 14 kDa plant-related serine protease inhibitor and regulation of cytotoxic activity in earthworm coelomic fluid. Dev Comp Immunol 22(1):1–12

    CAS  Article  PubMed  Google Scholar 

  48. Rongliang H, Zhang S, Liang H, Li N, Changchun T (2004) Codon optimization, expression, and characterization of recombinant lumbrokinase in goat milk. Protein Expr Purif 37:83–88

    Article  Google Scholar 

  49. Sugimoto M, Nakajima N (2001) Molecular cloning, sequencing, and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm. Biosci Biotechnol Biochem 65(7):1575–1580

    CAS  Article  PubMed  Google Scholar 

  50. Sumi H, Nakajima N, Mihara H (1993) A very stable and potent fibrinolytic enzyme found in earthworm Lumbricus rubellus autolysate. Comp Biochem Physiol Part B 106:763–766

    Article  Google Scholar 

  51. Sun HL, Jiao JD, Pan ZW (2006) The cardioprotective effect and mechanism of lumbrokinase. Yao Xue Xue Bao 41(3):247–251

    CAS  PubMed  Google Scholar 

  52. Tang Y, Zhang J, Gui L et al (2000) Crystallization and preliminary X-ray analysis of earthworm fibrinolytic enzyme component A from Eisenia fetida. Acta Cryst D 56:1659–1661

    CAS  Article  Google Scholar 

  53. Tang Y, Liang D, Jiang T et al (2002) Crystal structure of earthworm fibrinolytic enzyme component a: revealing the structural determinants of its dual fibrinolytic activity. J Mol Biol 321:57–68

    CAS  Article  PubMed  Google Scholar 

  54. Ueda M, Noda K, Nakazawa M et al (2008) A novel anti-plant viral protein from coelomic fluid of the earthworm Eisenia foetida: purification, characterization and its identification as a serine protease. Comp Biochem Physiol Part B 151:381–385

    Article  Google Scholar 

  55. Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109(1):52–58

    CAS  Article  PubMed  Google Scholar 

  56. Wang F, Wang C, Li M et al (2003a) Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnol Lett 25:1105–1109

    CAS  Article  PubMed  Google Scholar 

  57. Wang X, Wang X, Zhang Y et al (2003b) An antimicrobial peptide of the earthworm Pheretima tschiliensis: cDNA cloning, expression and immunolocalization. Biotechnol Lett 25:1317–1323

    CAS  Article  PubMed  Google Scholar 

  58. Wang C, Wang F, Li M et al (2004a) Structural basis for broad substrate specificity of earthworm fibrinolytic enzyme component A. Biochem Biophys Res Commun 325(3):877–882

    CAS  Article  PubMed  Google Scholar 

  59. Wang F, Wang C, Li M et al (2004b) Crystallization and preliminary crystallographic analysis of earthworm fibrinolytic enzyme component B from Eisenia fetida. Acta Crystallogr D 60(5):933–935

    Article  PubMed  Google Scholar 

  60. Wang F, Wang C, Li M et al (2005) Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. J Mol Biol 348(3):671–685

    CAS  Article  PubMed  Google Scholar 

  61. Wang Feng, Wang Chao, Li Mei et al (2006) Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. J Mol Biol 348:671–685. doi:10.1016/j.jmb.2005.02.055

    Article  Google Scholar 

  62. Wienkers LC, Rock B (2014) Multienzyme kinetics and sequential metabolism. Methods Mol Biol 1113:93–118. doi:10.1007/978-1-62703-758-7_6

    CAS  Article  PubMed  Google Scholar 

  63. Wu C, Li L, Zhao J et al (2002a) Effect of α 2 M on earthworm fibrinolytic enzyme III-1 from Lumbricus rubellus. Int J Biol Macromol 31:71–77

    CAS  Article  PubMed  Google Scholar 

  64. Wu XQ, Wu C, He RQ (2002b) Immobilized earthworm fibrinolytic enzyme III-1 with carbonyldiimidazole activated-agarose. Protein Pept Lett 9(1):75–80

    CAS  Article  PubMed  Google Scholar 

  65. Wu JX, Zhao XY, Pan R, He RQ (2007) Glycosylated trypsin-like proteases from earthworm Eisenia fetida. Int J Biol Macromol 40:399–406

    CAS  Article  PubMed  Google Scholar 

  66. Xie JB, He WG, Weng N et al (2003) Extraction and isolation of the anti-tumor protein components from earthworm (Eisenia fetida andrei) and the anti-tumor activity. Chin J Bio Mol Biol 19:359–366

    CAS  Google Scholar 

  67. Yang JS, Ru BG (1997) Purification and characterization of an SDS-activated fibrinolytic enzyme from Eisenia fetida. Comp Biochem Physiol Part B 18(3):623–631

    Article  Google Scholar 

  68. Yang JS, Ru BG (1998) Degradation of N-acetyl-l-tyrosine ethyl ester (ATEE) by a plasminogen activator from Eisenia fetida (e-PA). Chin J Biochem Mol Biol 14:417–421

    CAS  Google Scholar 

  69. Yegnanarayan R, Sethi PP, Rajhans PK et al (1987) Anti-inflammatory activity of total earthworm extracts in rats. Ind J Pharm 19:221–224

    Google Scholar 

  70. Yegnanarayan R, Ismail SA, Shorti DS (1998) Anti-inflammatory activity of two earthworm portions in carrageenan pedal oedema test in rats. Ind J Physiol Pharmacol 32:72–74

    Google Scholar 

  71. Yuan L, Xu JM, Zhou YC (2004) Effects of the purified earthworm extracts on various hemal tumor cells. Clin Med J China 11:177–179

    Google Scholar 

  72. Zhang X, Houk KN (2005) Why enzymes are proficient catalysts: beyond the Pauling paradigm. Acc Chem Res 38(5):379–385

    CAS  Article  PubMed  Google Scholar 

  73. Zhang X, Zhang J, Kuang P et al (2003) The effect of lumbrokinase on P-selectin and E-selectin in cerebral ischemia model of rat. J TraditChin Med 23:141–146

    Google Scholar 

  74. Zhang JL, Liu ZZ, Wang XY et al (2008) Purification and characterization of deoxyribonuclease from earthworm Eisenia foetida. Beijing Da Xue Xue Bao 40(5):519–523

    CAS  PubMed  Google Scholar 

  75. Zhao J, Li L, Wu C, He RQ (2002a) Hydrolysis of fibrinogen and plasminogen by immobilized earthworm fibrinolytic enzyme II from Eisenia fetida. Int J Biol Macromol 32:165–171

    Article  Google Scholar 

  76. Zhao R, Ji JG, Tong YP et al (2002b) Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida. Acta Biochim Biophys Sin 34:576–582

    CAS  PubMed  Google Scholar 

  77. Zhao J, Pan R, He J, et al (2007) Eisenia fetida protease-III-1 functions in both fibrinolysis and fibrogenesis. J of Biomed Biotechnol 2007, Article ID 97654

  78. Zhao J, Xiao R, He J, Pan R et al (2007b) In situ localization and substrate specificity of earthworm protease-II and protease III-1 from Eisenia fetida. Int J Biol Macromol 40:67–75

    CAS  Article  PubMed  Google Scholar 

  79. Zhu Y, He ZZ, Sun KD, Wang SF (2000) Effect of lumbrokinase on experimental thrombus. J Chin Pharm Univ 31:50–52

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Principal and the management of R.V.R. & J.C. College of Engineering (A), Guntur, Andhra Pradesh, India, for providing support to the current study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. K. Pulicherla.

Ethics declarations

Conflict of interest

Author declares no conflict of interest.

Additional information

Handling Editor: C. Schiene-Fischer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Pulicherla, K.K. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential. Amino Acids 48, 941–948 (2016). https://doi.org/10.1007/s00726-015-2162-3

Download citation

Keywords

  • Anti-tumor and anti-viral activity
  • DNase
  • Enzyme and catalytic promiscuity
  • Earthworm serine protease (ESP)
  • Thrombotic and vascular disorders