Skip to main content
Log in

Characterization of aromatic aminotransferases from Ephedra sinica Stapf

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Ephedra sinica Stapf (Ephedraceae) is a broom-like shrub cultivated in arid regions of China, Korea and Japan. This plant accumulates large amounts of the ephedrine alkaloids in its aerial tissues. These analogs of amphetamine mimic the actions of adrenaline and stimulate the sympathetic nervous system. While much is known about their pharmacological properties, the mechanisms by which they are synthesized remain largely unknown. A functional genomics platform was established to investigate their biosynthesis. Candidate enzymes were obtained from an expressed sequence tag collection based on similarity to characterized enzymes with similar functions. Two aromatic aminotransferases, EsAroAT1 and EsAroAT2, were characterized. The results of quantitative reverse transcription-polymerase chain reaction indicated that both genes are expressed in young stem tissue, where ephedrine alkaloids are synthesized, and in mature stem tissue. Nickel affinity-purified recombinant EsAroAT1 exhibited higher catalytic activity and was more homogeneous than EsAroAT2 as determined by size-exclusion chromatography. EsAroAT1 was highly active as a tyrosine aminotransferase with α-ketoglutarate followed by α-ketomethylthiobutyrate and very low activity with phenylpyruvate. In the reverse direction, catalytic efficiency was similar for the formation of all three aromatic amino acids using l-glutamate. Neither enzyme accepted putative intermediates in the ephedrine alkaloid biosynthetic pathway, S-phenylacetylcarbinol or 1-phenylpropane-1,2-dione, as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bedewitz MA, Gongora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26:3745–3762. doi:10.1105/tpc.114.130534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensky D, Gamble A, Kaptchuk T (1986) Chinese Herbal Medicine. Materia Medica, Eastland, Seattle, Washington

    Google Scholar 

  • Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313. doi:10.1016/j.bbagen.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  • Bross CD, Corea ORA, Kaldis A, Menassa R, Bernards MA, Kohalmi SE (2011) Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana. Plant Physiol Biochem 49:882–890. doi:10.1016/j.plaphy.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  • Bruneton J (1995) Pharmacognosy, phytochemistry. Medicinal Plants. Intercept Ltd., Hampshire

    Google Scholar 

  • Cho MH, Corea ORA, Yang H, Bedgar DL, Laskar DD, Anterola AM, Moog-Anterola FA, Hood RL, Kohalmi SE, Bernards MA, Kang C, Davin LB, Lewis NG (2007) Phenylalanine biosynthesis in Arabidopsis thaliana—identification and characterization of arogenate dehydratases. J Biol Chem 282:30827–30835. doi:10.1074/jbc.M702662200

    Article  CAS  PubMed  Google Scholar 

  • Collier RH, Kohlhaw G (1972) Nonidentity of aspartate and aromatic aminotransferase components of transaminase-a in Escherichia-coli. J Bacteriol 112:365–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AJ (2004) The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44:557–577. doi:10.1016/j.neuint.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  • Corea ORA, Ki C, Cardenas CL, Kim S-J, Brewer SE, Patten AM, Davin LB, Lewis NG (2012) Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins. J Biol Chem 287:11446–11459. doi:10.1074/jbc.M111.322164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal Cin V, Tieman DM, Tohge T, McQuinn R, de Vos RC, Osorio S, Schmelz EA, Taylor MG, Smits-Kroon MT, Schuurink RC, Haring MA, Giovannoni J, Fernie AR, Klee HJ (2011) Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23:2738–2753. doi:10.1105/tpc.111.086975

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Torre F, De Santis L, Suarez MF, Crespillo R, Cánovas FM (2006) Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J 46:414–425. doi:10.1111/j.1365-313X.2006.02713.x

    Article  PubMed  Google Scholar 

  • de la Torre FN, El-Azaz J, Ávila C, Cánovas FM (2014) Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol 164:92–104. doi:10.1104/pp.113.232462

    Article  PubMed  PubMed Central  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987a) Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures. Arch Biochem Biophys 257:430–438

    Article  CAS  PubMed  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987b) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26:1941–1946

    Article  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738. doi:10.1146/annurev.arplant.56.032604.144301

    Article  CAS  PubMed  Google Scholar 

  • Ellens KW, Richardson LG, Frelin O, Collins J, Ribeiro CL, Hsieh YF, Mullen RT, Hanson AD (2014) Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Phytochemistry 113:160–169. doi:10.1016/j.phytochem.2014.04.012

    Article  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givan CV (1980) Aminotransferases in higher plants. In: Miflin BJ (ed) Amino acids and derivatives, vol 5. The biochemistry of plantsAcademic Press, New York, pp 329–357

    Chapter  Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61:1111–1123. doi:10.1093/jxb/erp390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graindorge M, Giustini C, Jacomin AC, Kraut A, Curien G, Matringe M (2010) Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis. FEBS Lett 584:4357–4360. doi:10.1016/j.febslet.2010.09.037

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Hutzler J, Tresch S, Christiansen N, Looser R, Ehrhardt T (2012) On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. Pest Manag Sci 68:482–492. doi:10.1002/ps.2319

    Article  CAS  PubMed  Google Scholar 

  • Groves RA, Hagel JM, Zhang Y, Kilpatrick K, Levy A, Marsolais F, Lewinsohn E, Sensen CW, Facchini PJ (2015) Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. PLoS One 10:e0119701. doi:10.1371/journal.pone.0119701

    Article  PubMed  PubMed Central  Google Scholar 

  • Grue-Sørensen G, Spenser ID (1994) Biosynthetic route to the Ephedra alkaloids. J Am Chem Soc 116:6195–6200

    Article  Google Scholar 

  • Hagel JM, Krizevski R, Kilpatrick K, Sitrit Y, Marsolais F, Lewinsohn E, Facchini PJ (2011) Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids. Genet Mol Biol 34:640–646. doi:10.1590/S1415-47572011000400017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Krizevski R, Marsolais F, Lewinsohn E, Facchini PJ (2012) Biosynthesis of amphetamine analogs in plants. Trends Plant Sci 17:404–412. doi:10.1016/j.tplants.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Haller CA, Benowitz NL (2000) Adverse cardiovascular and central nervous system events associated with dietary supplements containing Ephedra alkaloids. N Engl J Med 343:1833–1838. doi:10.1056/nejm200012213432502

    Article  CAS  PubMed  Google Scholar 

  • Heilbronn J, Wilson J, Berger BJ (1999) Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J Bacteriol 181:1739–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, Hara M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169:444–451. doi:10.1016/j.jplph.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Hirotsu K, Goto M, Okamoto A, Miyahara I (2005) Dual substrate recognition of aminotransferases. Chem Rec 5:160–172. doi:10.1002/tcr.20042

    Article  CAS  PubMed  Google Scholar 

  • Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770. doi:10.1016/j.jplph.2005.04.019

    Article  PubMed  Google Scholar 

  • Howell JM, Winstone TL, Coorssen JR, Turner RJ (2006) An evaluation of in vitro protein-protein interaction techniques: assessing contaminating background proteins. Proteomics 6:2050–2069. doi:10.1002/pmic.200500517

    Article  PubMed  Google Scholar 

  • Ishikawa K, Kaneko E, Ichiyama A (1996) Pyridoxal 5′-phosphate binding of a recombinant rat serine:pyruvate/alanine:glyoxylate aminotransferase. J Biochem 119:970–978

    Article  CAS  PubMed  Google Scholar 

  • Krizevski R, Bar E, Shalit O, Sitrit Y, Ben-Shabat S, Lewinsohn E (2010) Composition and stereochemistry of ephedrine alkaloids accumulation in Ephedra sinica Stapf. Phytochemistry 71:895–903. doi:10.1016/j.phytochem.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  • Krizevski R, Bar E, Shalit OR, Levy A, Hagel JM, Kilpatrick K, Marsolais F, Facchini PJ, Ben-Shabat S, Sitrit Y, Lewinsohn E (2012) Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. Phytochemistry 81:71–79. doi:10.1016/j.phytochem.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  • Lee E-J, Facchini PJ (2011) Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol 157:1067–1078. doi:10.1104/pp.111.185512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leete E (1958) Biogenesis of d-norpseudo ephedrine in Catha-edulis. Chem Ind 1088–1089

  • Lewis WH, Elvin-Lewis MPF (1977) Medical botany, plants affecting man’s health. Wiley Interscience, USA

    Google Scholar 

  • Lichtenthaler H (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179. doi:10.1007/s11120-007-9204-y

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Olsen LI (2004) Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci 23:73–89. doi:10.1080/07352680490273419

    Article  CAS  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. doi:10.1146/annurev-arplant-042811-105439

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N (2010) RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell 22:832–849. doi:10.1105/tpc.109.073247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Yoo H, Dudareva N (2011) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat Chem Biol 7:19–21. doi:10.1038/nchembio.485

    Article  CAS  PubMed  Google Scholar 

  • Mehere P, Han Q, Lemkul JA, Vavricka CJ, Robinson H, Bevan DR, Li J (2010) Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations. Protein Cell 1:1023–1032. doi:10.1007/s13238-010-0128-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1993) Aminotransferases - Demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561. doi:10.1111/j.1432-1033.1993.tb17953.x

    Article  CAS  PubMed  Google Scholar 

  • Nierop Groot MN, de Bont JA (1999) Involvement of manganese in conversion of phenylalanine to benzaldehyde by lactic acid bacteria. Appl Environ Microbiol 65:5590–5593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Mikage M, Sekita S (2008) Molecular characterization of the phenylalanine ammonia-lyase from Ephedra sinica. Biol Pharm Bull 31:2194–2199

    Article  CAS  PubMed  Google Scholar 

  • Pinto JT, Krasnikov BF, Alcutt S, Jones ME, Dorai T, Villar MT, Artigues A, Li J, Cooper AJL (2014) Kynurenine aminotransferase III and glutamine transaminase l are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate l-selenomethionine. J Biol Chem 289:30950–30961. doi:10.1074/jbc.M114.591461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu PR, Hudson AO (2010) Identification and partial characterization of an l-tyrosine aminotransferase (TAT) from Arabidopsis thaliana. Biochem Res Int 2010:549572

    Article  PubMed  PubMed Central  Google Scholar 

  • Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J 71:850–859. doi:10.1111/j.1365-313X.2012.05035.x

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (2003) In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J Pharmacol Exp Ther 307:138–145. doi:10.1124/jpet.103.053975

    Article  CAS  PubMed  Google Scholar 

  • Rudat J, Brucher BR, Syldatk C (2012) Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2:11. doi:10.1186/2191-0855-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider G, Kack H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8:R1–R6

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62. doi:10.3389/fpls.2013.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzin V, Malitsky S, Aharoni A, Galili G (2009) Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis. Plant J 60:156–167. doi:10.1111/j.1365-313X.2009.03945.x

    Article  CAS  PubMed  Google Scholar 

  • Wang C-S, Vodkin L (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol Biol Rep 12:132–145. doi:10.1007/bf02668374

    Article  CAS  Google Scholar 

  • Yamasaki K, Sankawa U, Shibata S (1969) Biosynthesis of ephedrine in Ephedra. Participation of C6–C1 unit. Tetrahedron Lett 10:4099–4102

    Article  Google Scholar 

  • Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N (2013) An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat Commun 4:2833. doi:10.1038/ncomms3833

    Article  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi:10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Marsolais F (2014) Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. Phytochemistry 99:36–43. doi:10.1016/j.phytochem.2013.12.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Research Grant No. CA-9117-09 from the Canada-Israel Binational Agricultural Research and Development Fund, the Natural Sciences and Engineering Research Council and Agriculture and Agri-Food Canada to E.L., P.F. and F.M. Granting agencies were not involved in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. K.K. was co-supervised by Norman Hüner during his M. Sc. program (Department of Biology, University of Western Ontario). We thank staff at the London Development and Research Centre, Agriculture and Agri-Food Canada, Tim McDowell for assistance with GC–MS, Sudhakar Pandurangan with RT-quantitative PCR, and Alex Molnar for the preparation of figures. We acknowledge support from the Genome Canada PhytoMetaSyn project for bioinformatic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marsolais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: F. Hollfelder.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpatrick, K., Pajak, A., Hagel, J.M. et al. Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 48, 1209–1220 (2016). https://doi.org/10.1007/s00726-015-2156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2156-1

Keywords

Navigation