Skip to main content
Log in

Identification of lysine K18 acetylation on histone H3 peptide using gold nanoparticles’ aggregation behaviour

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Acetylation of histones, the major protein component of eukaryotic chromosomes, contributes to the epigenetic regulation of gene expression and is also involved in cancer development. A recent study revealed the correlation between tumour formation and acetylation level of lysine K18 on histone H3. In this study, we developed two colorimetric in vitro assays using gold nanoparticles (AuNPs) for identification of lysine K18 acetylation on histone H3 peptide. In assay I, citrate ion-capped AuNP without further modification was employed. Simply mixing the K18 peptide with AuNP solution leads to distinct particle aggregation, relative to that by non-acetylated or lysine K14 acetylated control peptides. In assay II, an AuNP–peptide–antibody composite was synthesized and used as both the sensing probe and the transducing element. By mixing the sample peptides with the composite solution followed by PBS screening, different aggregation behaviours were observed between the K18 acetylated target peptide and the control sequences. Both assays are capable of identifying the acetylated peptides, and also differentiating the distinctive acetylation positions that differ merely by a distance of three amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111(3):381–392

    Article  CAS  PubMed  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400

    Article  CAS  PubMed  Google Scholar 

  • Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to daphnia magna. Environ Sci NANO 1:260–270

    Article  CAS  Google Scholar 

  • Britton LM, Gonzales-Cope M, Zee BM, Barcia BA (2011) Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 8(5):631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerbo VD, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A, Richter FM, Bannister AJ, Mittler G, Michaelis J, Khochbin S, Feil R, Schuebeler D, Owen-Hughes T, Daujat S, Schneider R (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3:e01632

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti R, Klibanov AM (2003) Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J Am Chem Soc 125(41):12531–12540

    Article  CAS  PubMed  Google Scholar 

  • Chandrawati R, Stevens MM (2014) Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation Factor XIII activity. Chem Commun 50:5431–5434

    Article  CAS  Google Scholar 

  • Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100

    Article  CAS  PubMed  Google Scholar 

  • Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quantity. Nat Struct Mol Biol 18(1):91–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan K-L, Yu W, Lin Y, Xiong Y, Zhao S (2010) Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nat Protoc 5(9):1583–1595

    Article  CAS  PubMed  Google Scholar 

  • Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R (2010) Bioorthogonal chemistry amplifies nanoparticles binding and enhances the sensitivity of cell detection. Nat Nanotechnol 5:660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  CAS  Google Scholar 

  • Hyun S, Lee KH, Han A, Yu J (2011) An RNA aptamer that selectively recognizes symmetric demethylation of arginine 8 in the histone H3N-terminal peptide. Nucleic Acid Ther 21(3):157–163

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karczmarski J, Rubel T, Paziewska A, Mikula M, Bujko M, Kober P, Dadlez M, Ostrowski J (2014) Histone H3 lysine 27 acetylation is altered in colon cancer. Clin Proteomics 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein JS, Gnanapragasam PNP, Galimidi RP, Foglesong CP, West AP Jr, Bjorkman PJ (2009) Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci USA 106(18):7385–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3(2):314–320

    Article  CAS  PubMed  Google Scholar 

  • Li N, Su X, Lu Y (2015) Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 140:2916–2943

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou T, Chen Z, Wang Y, Chen L (2011) Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces 3(5):1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Minaker SA, Daze KD, Ma MCF, Hof F (2012) Antibody-free reading of the histone code using a simple chemical sensor array. J Am Chem Soc 134(28):11674–11680

    Article  CAS  PubMed  Google Scholar 

  • Oishi J, Asami Y, Mori T, Kang JH, Niidome T, Katayama Y (2008) Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules 9(9):2301–2308

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Wang R, Yang X, Tang K, Jing N (2015) Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290:2508–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronzoni S, Faretta M, Ballarini M, Pelicci P, Minucci S (2005) New method to detect histone acetylation levels by flow cytometry. Cytometry Part A 66A(1):52–61

    Article  CAS  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon MD, Chu F, Racki LR, de la Curz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128(5):1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smet-Nocca C, Wieruszeski JM, Melnyk L, Benecke A (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16(8):414–423

    CAS  PubMed  Google Scholar 

  • Sutarlie L, Aung KMM, Lim MGL, Lukman S, Cheung E, Su X (2014) Studying protein–DNA complexes using gold nanoparticles by exploiting particle aggregation, refractive index change, and fluorescence quenching and enhancement particles. Plasmonics 9(4):753–763

    Article  CAS  Google Scholar 

  • Swartz JD, Gulka CP, Haselton FR, Wright DW (2011) Development of a histidine-targeted spectrophotometric sensor using Ni(II)NTA-functionalized Au and Ag nanoparticles. Langmuir 27(24):15330–15339

    Article  CAS  PubMed  Google Scholar 

  • Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin film of Au@SiO2 particles. J Phys Chem B 105(17):3441–3452

    Article  CAS  Google Scholar 

  • Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun, 3780–3782

  • Wang T, Kumru OS, Yi L, Wang YJ, Zhang J, Kim JH, Joshi SB, Middaugh CR, Volkin DB (2013) Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J Pharm Sci 102(8):2520–2537

    Article  CAS  PubMed  Google Scholar 

  • Williams BAR, Lin L, Lindsay SM, Chaput JC (2009) Evolution of a histone H4-K16 acetyl-specific DNA aptamer. J Am Chem Soc 131(18):6330–6331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA 107(24):10837–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida W, Kezuka A, Abe K, Wakeda H, Nakabayashi K, Hata K, Ikebukuro K (2013) Detection of histone modification by chromatin immunoprecipitation combined zinc finger luciferase-based bioluminescence resonance energy transfer assay. Anal Chem 85(13):6485–6490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Xiaodi Su would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support of JCO 14302FG096 and ETPL/13-R15GAP-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodi Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: D. Tsikas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Sutarlie, L., Lew, Q.J. et al. Identification of lysine K18 acetylation on histone H3 peptide using gold nanoparticles’ aggregation behaviour. Amino Acids 48, 1023–1031 (2016). https://doi.org/10.1007/s00726-015-2148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2148-1

Keywords

Navigation