Skip to main content

Advertisement

Log in

CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

CK1 protein kinases form a family of serine/threonine kinases which are highly conserved through different species and ubiquitously expressed. CK1 family members can phosphorylate numerous substrates thereby regulating different biological processes including membrane trafficking, cell cycle regulation, circadian rhythm, apoptosis, and signal transduction. Deregulation of CK1 activity and/or expression contributes to the development of neurological diseases and cancer. Therefore, CK1 became an interesting target for drug development and it is relevant to further understand the mechanisms of its regulation. In the present study, Cyclin-dependent kinase 2/Cyclin E (CDK2/E) and Cyclin-dependent kinase 5/p35 (CDK5/p35) were identified as cellular kinases able to modulate CK1δ activity through site-specific phosphorylation of its C-terminal domain. Furthermore, pre-incubation of CK1δ with CDK2/E or CDK5/p35 reduces CK1δ activity in vitro, indicating a functional impact of the interaction between CK1δ and CDK/cyclin complexes. Interestingly, inhibition of Cyclin-dependent kinases by Dinaciclib increases CK1δ activity in pancreatic cancer cells. In summary, these results suggest that CK1δ activity can be modulated by the interplay between CK1δ and CDK2/E or CDK5/p35. These findings extend our knowledge about CK1δ regulation and may be of use for future development of CK1-related therapeutic strategies in the treatment of neurological diseases or cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behrend L, Milne DM, Stoter M, Deppert W, Campbell LE, Meek DW, Knippschild U (2000) IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene 19:5303–5313. doi:10.1038/sj.onc.1203939

    Article  CAS  PubMed  Google Scholar 

  • Bischof J et al (2012) 2-Benzamido-N-(1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivatives as potent inhibitors of CK1delta/epsilon. Amino Acids 43:1577–1591. doi:10.1007/s00726-012-1234-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bischof J, Randoll SJ, Sussner N, Henne-Bruns D, Pinna LA, Knippschild U (2013) CK1delta kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One 8:e68803. doi:10.1371/journal.pone.0068803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blachly JS, Byrd JC (2013) Emerging drug profile: cyclin-dependent kinase inhibitors. Leuk Lymphoma 54:2133–2143. doi:10.3109/10428194.2013.783911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borchert N et al (2010) Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res 20:837–846. doi:10.1101/gr.103119.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brockschmidt C et al (2008) Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut 57:799–806. doi:10.1136/gut.2007.123695

    Article  CAS  PubMed  Google Scholar 

  • Carmel G, Leichus B, Cheng X, Patterson SD, Mirza U, Chait BT, Kuret J (1994) Expression, purification, crystallization, and preliminary X-ray analysis of casein kinase-1 from Schizosaccharomyces pombe. J Biol Chem 269:7304–7309

    CAS  PubMed  Google Scholar 

  • Castro-Alvarez JF, Uribe-Arias A, Cardona-Gomez GP (2015) Cyclin-dependent kinase 5 targeting prevents beta-Amyloid aggregation involving glycogen synthase kinase 3beta and phosphatases. J Neurosci Res 93:1258–1266. doi:10.1002/jnr.23576

    Article  CAS  PubMed  Google Scholar 

  • Cegielska A, Gietzen KF, Rivers A, Virshup DM (1998) Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J Biol Chem 273:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Cheong JK, Virshup DM (2011) Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 43:465–469. doi:10.1016/j.biocel.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705. doi:10.1038/nprot.2009.36

    Article  CAS  PubMed  Google Scholar 

  • Dan-Goor M, Nasereddin A, Jaber H, Jaffe CL (2013) Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence. PLoS One 8:e79287. doi:10.1371/journal.pone.0079287

    Article  PubMed Central  PubMed  Google Scholar 

  • Enders GH (2012) Mammalian interphase cdks: dispensable master regulators of the cell cycle. Genes Cancer 3:614–618. doi:10.1177/1947601913479799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T (2010) Identification of substrates for cyclin dependent kinases. Adv Enzyme Regul 50:375–399. doi:10.1016/j.advenzreg.2009.12.001

    Article  PubMed  Google Scholar 

  • Feldmann G et al (2011) Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther 12:598–609. pii:16475

  • Flajolet M, He G, Heiman M, Lin A, Nairn AC, Greengard P (2007) Regulation of Alzheimer’s disease amyloid-beta formation by casein kinase I. Proc Natl Acad Sci USA 104:4159–4164. doi:10.1073/pnas.0611236104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giamas G et al (2007) Phosphorylation of CK1delta: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo. Biochem J 406:389–398. doi:10.1042/BJ20070091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gietzen KF, Virshup DM (1999) Identification of inhibitory autophosphorylation sites in casein kinase I epsilon. J Biol Chem 274:32063–32070

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Roach PJ (1995) Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J Biol Chem 270:21689–21694

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Haas DW, Hagedorn CH, DePaoli-Roach AA, Roach PJ (1993) Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis. J Biol Chem 268:6394–6401

    CAS  PubMed  Google Scholar 

  • Gross SD, Anderson RA (1998) Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 10:699–711. pii: S0898-6568(98)00042-4

  • Harper JW, Adams PD (2001) Cyclin-dependent kinases. Chem Rev 101:2511–2526. pii: cr0001030

  • Hirner H et al (2012) Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One 7:e29709. doi:10.1371/journal.pone.0029709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson AE, Chen JS, Gould KL (2013) CK1 is required for a mitotic checkpoint that delays cytokinesis. Curr Biol 23:1920–1926. doi:10.1016/j.cub.2013.07.077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura T, Ishiguro K, Hisanaga S (2014) Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 7:65. doi:10.3389/fnmol.2014.00065

    Article  PubMed Central  PubMed  Google Scholar 

  • Knippschild U, Milne D, Campbell L, Meek D (1996) p53N-terminus-targeted protein kinase activity is stimulated in response to wild type p53 and DNA damage. Oncogene 13:1387–1393

    CAS  PubMed  Google Scholar 

  • Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF, Meek DW (1997) p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 15:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Knippschild U et al (2014) The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol 4:96. doi:10.3389/fonc.2014.00096

    Article  PubMed Central  PubMed  Google Scholar 

  • Koch A, Krug K, Pengelley S, Macek B, Hauf S (2011) Mitotic substrates of the kinase aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast. Sci Signal 4:rs6. doi:10.1126/scisignal.2001588

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim HS, Lee SJ, Kim KT (2007) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 120:2259–2271. doi:10.1242/jcs.03468

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202. pii: 1866

  • Longenecker KL, Roach PJ, Hurley TD (1996) Three-dimensional structure of mammalian casein kinase I: molecular basis for phosphate recognition. J Mol Biol 257:618–631. doi:10.1006/jmbi.1996.0189

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641. doi:10.1016/j.tibs.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  • Mariaule G, Belmont P (2014) Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey. Molecules 19:14366–14382. doi:10.3390/molecules190914366

    Article  PubMed  Google Scholar 

  • Milne DM, Campbell LE, Campbell DG, Meek DW (1995) p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J Biol Chem 270:5511–5518

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291. doi:10.1146/annurev.cellbio.13.1.261

    Article  CAS  PubMed  Google Scholar 

  • Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG (1980) Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma. Int J Cancer 25:591–598

    Article  CAS  PubMed  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen JV, Macek B (2009) High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Methods Mol Biol 492:131–142. doi:10.1007/978-1-59745-493-3_7

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Kim SI, Lee MS, Youn CY, Kim DJ, Jho EH, Song WK (2004) Modulation of beta-catenin phosphorylation/degradation by cyclin-dependent kinase 2. J Biol Chem 279:19592–19599. doi:10.1074/jbc.M314208200

    Article  CAS  PubMed  Google Scholar 

  • Paruch K et al (2010) Discovery of Dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med Chem Lett. 1:204–208. doi:10.1021/ml100051d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peifer C et al (2009) 3,4-Diaryl-isoxazoles and -imidazoles as potent dual inhibitors of p38alpha mitogen activated protein kinase and casein kinase 1delta. J Med Chem 52:7618–7630. doi:10.1021/jm9005127

    Article  CAS  PubMed  Google Scholar 

  • Perez DI, Gil C, Martinez A (2011) Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 31:924–954. doi:10.1002/med.20207

    Article  CAS  PubMed  Google Scholar 

  • Peyressatre M, Prevel C, Pellerano M, Morris MC (2015) Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 7:179–237. doi:10.3390/cancers7010179

    Article  PubMed Central  PubMed  Google Scholar 

  • Price BD, Hughes-Davies L, Park SJ (1995) Cdk2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene 11:73–80

    CAS  PubMed  Google Scholar 

  • Richter J et al (2015) Effects of altered expression and activity levels of CK1delta and varepsilon on tumor growth and survival of colorectal cancer patients. Int J Cancer 136:2799–2810. doi:10.1002/ijc.29346

    Article  CAS  PubMed  Google Scholar 

  • Rowles J, Slaughter C, Moomaw C, Hsu J, Cobb MH (1991) Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci USA 88:9548–9552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubio de la Torre E, Luzon-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I, Hilfiker S (2009) Combined kinase inhibition modulates parkin inactivation. Hum Mol Genet 18:809–823. doi:10.1093/hmg/ddn407

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuno T, Watanabe Y (2015) Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis. Dev Cell 32:220–230. doi:10.1016/j.devcel.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  • Santos JA, Logarinho E, Tapia C, Allende CC, Allende JE, Sunkel CE (1996) The casein kinase 1 alpha gene of Drosophila melanogaster is developmentally regulated and the kinase activity of the protein induced by DNA damage. J Cell Sci 109(Pt 7):1847–1856

    CAS  PubMed  Google Scholar 

  • Schittek B, Sinnberg T (2014) Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer. 13:231. doi:10.1186/1476-4598-13-231

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma P, Sharma M, Amin ND, Albers RW, Pant HC (1999a) Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96:11156–11160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma P, Steinbach PJ, Sharma M, Amin ND, Barchi JJ Jr, Pant HC (1999b) Identification of substrate binding site of cyclin-dependent kinase 5. J Biol Chem 274:9600–9606

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Stoter M et al (2005) Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene 24:7964–7975. doi:10.1038/sj.onc.1208941

    Article  PubMed  Google Scholar 

  • Tuazon PT, Traugh JA (1991) Casein kinase I and II–multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res 23:123–164

    CAS  PubMed  Google Scholar 

  • Venerando A, Marin O, Cozza G, Bustos VH, Sarno S, Pinna LA (2010) Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci 67:1105–1118. doi:10.1007/s00018-009-0236-7

    Article  CAS  PubMed  Google Scholar 

  • Viera A et al (2015) CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase. J Cell Sci 128:88–99. doi:10.1242/jcs.154922

    Article  CAS  PubMed  Google Scholar 

  • Walczak CE, Anderson RA, Nelson DL (1993) Identification of a family of casein kinases in Paramecium: biochemical characterization and cellular localization. Biochem J 296(Pt 3):729–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X et al (1996) Prenylated isoforms of yeast casein kinase I, including the novel Yck3p, suppress the gcs1 blockage of cell proliferation from stationary phase. Mol Cell Biol 16:5375–5385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L et al (2013) Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development. PLoS One 8:e63173. doi:10.1371/journal.pone.0063173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X (1995) Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J 14:1015–1023

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yasojima K, Schwab C, McGeer EG, McGeer PL (2000) Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res 887:80–89. pii: S0006-8993(00)02970-X

  • Zhai L et al (1995) Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem 270:12717–12724

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Krishnamurthy PK, Johnson GV (2002) Cdk5 phosphorylates p53 and regulates its activity. J Neurochem 81:307–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mirita Franz-Wachtel (Proteome Center Tübingen, Universität Tübingen, Germany) for performing the mass spectrometric analyses. We gratefully acknowledge Annette Blatz for excellent technical support. We are also grateful for scientific assistance of Julia Richter, Vanessa Alscher, and Nadine Süßner. CI is Ph.D. Student of the International Graduate School in Molecular Medicine at Ulm University. This work was supported by Deutsche Krebshilfe, Dr. Mildred Scheel Stiftung, awarded to Uwe Knippschild (108489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Knippschild.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

The research does not involve human participants and/or animals.

Additional information

C. Ianes and P. Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ianes, C., Xu, P., Werz, N. et al. CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation. Amino Acids 48, 579–592 (2016). https://doi.org/10.1007/s00726-015-2114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2114-y

Keywords

Navigation