Skip to main content
Log in

Rational design of a low-affinity peptide for the detection of cystatin C in a fast homogeneous immunoassay

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Immunoassays play an essential role in current research and diagnostics resulting in a variety of detection principles. Thereby, homogeneous assays are often used for a fast signal response as demanded for example in point-of-care diagnostics. These systems often rely on a competitive assay design where the sample analyte and the corresponding dye-labeled substance are competing for binding sites on an antibody present in limited amounts. Due to the similar affinities of the antibody towards the sample analyte and the competitor, both sensitivity and assay time are limited. As a consequence, a competitor with a slightly reduced affinity towards the antibody can potentially overcome these drawbacks. Here, we present the rational design of a low-affinity peptide (donor peptide) as a specific analyte competitor for a FRET-based homogeneous immunoassay for the analysis of the protein cystatin C. Thereby, the strategy of peptide-induced antibody generation was combined with the selective variation of the immunization sequence in order to achieve a lower affinity towards the antibody. We could show that shortened donor peptides improved the resulting quenching efficiency in the immunoassay. In addition, the substitution of small hydrophobic amino acids by those with a higher steric demand appeared to be the most promising strategy providing a fast assay response for cystatin C of only 90 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

BHQ10:

Black Hole Quencher 10

BSA:

Bovine serum albumin

Cf:

Carboxyfluorescein

CSF:

Cerebrospinal fluid

DIC:

N,N′-Diisopropylcarbodiimde

DMEM:

Dulbecco’s modified Eagle medium

DMF:

N,N-Dimethylformamide

ELISA:

Enzyme-linked immunosorbent assay

FRET:

Förster resonance energy transfer

HOBt:

Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

HRP:

Horseradish peroxidase

K d :

Dissociation constant

mAb:

Monoclonal antibody

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

PBS:

Phosphate buffered saline

PETIA:

Particle-enhanced turbidimetric immunoassay

QE:

Quenching effect

SD:

Standard deviation

TFA:

Trifluoroacetic acid

TMB:

Tetramethylbenzidine

References

  • Absolom DR, van Oss CJ (1986) The nature of the antigen-antibody bond and the factors affecting its association and dissociation. CRC Crit Rev Immunol 6:1–46

    CAS  PubMed  Google Scholar 

  • Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185. doi:10.1373/clinchem.2009.126706

    Article  CAS  PubMed  Google Scholar 

  • Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071. doi:10.1126/science.1083182

    Article  CAS  PubMed  Google Scholar 

  • Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139–150. doi:10.1016/0009-9120(88)90001-X

    Article  CAS  PubMed  Google Scholar 

  • Dobslaff K, Kreisig T, Berthold N, Hoffmann R, Zuchner T (2012) Novel peptide-protein assay for identification of antimicrobial peptides by fluorescence quenching. Anal Bioanal Chem 403:2725–2731. doi:10.1007/s00216-012-6050-3

    Article  CAS  PubMed  Google Scholar 

  • Hennion MC, Barcelo D (1998) Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: a review. Anal Chim Acta 362:3–34. doi:10.1016/S0003-2670(97)00608-9

    Article  CAS  Google Scholar 

  • Irani DN, Anderson C, Gundry R, Cotter R, Moore S, Kerr DA, McArthur JC, Sacktor N, Pardo CA, Jones M, Calabresi PA, Nath A (2006) Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann Neurol 59:237–247. doi:10.1002/ana.20786

    Article  CAS  PubMed  Google Scholar 

  • Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8:316–320. doi:10.1038/86188

    Article  CAS  PubMed  Google Scholar 

  • Kreisig T, Hoffmann R, Zuchner T (2011) Homogeneous fluorescence-based immunoassay detects antigens within 90 seconds. Anal Chem 83:4281–4287. doi:10.1021/ac200777h

    Article  CAS  PubMed  Google Scholar 

  • Kreisig T, Hoffmann R, Zuchner T (2013) Highly efficient Förster resonance energy transfer in a fast, serum-compatible immunoassay. ChemBioChem 14:699–702. doi:10.1002/cbic.201300073

    Article  CAS  PubMed  Google Scholar 

  • Kreisig T, Prasse AA, Zscharnack K, Volke D, Zuchner T (2014) His-tag protein monitoring by a fast mix-and-measure immunoassay. Sci Rep 4:5613. doi:10.1038/srep05613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindström V, Grubb A (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926

    CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Mayilo S, Ehlers B, Wunderlich M, Klar TA, Josel HP, Heindl D, Nichtl A, Kürzinger K, Feldmann J (2009) Competitive homogeneous digoxigenin immunoassay based on fluorescence quenching by gold nanoparticles. Anal Chim Acta 646:119–122. doi:10.1016/j.aca.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  • Qin QP, Peltola O, Pettersson K (2003) Time-resolved fluorescence resonance energy transfer assay for point-of-care testing of urinary albumin. Clin Chem 49:1105–1113. doi:10.1373/49.7.1105

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JC, Guillaume E, Lescuyer P, Allard L, Carrette O, Scherl A, Burgess J, Corthals GL, Burkhard PR, Hochstrasser DF (2004) Cystatin C as a potential cerebrospinal fluid marker for the diagnosis of Creutzfeldt–Jakob disease. Proteomics 4:2229–2233. doi:10.1002/pmic.200300799

    Article  CAS  PubMed  Google Scholar 

  • Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl 45:4562–4589. doi:10.1002/anie.200503873

    Article  CAS  PubMed  Google Scholar 

  • Trier NH, Hansen PR, Houen G (2012) Production and characterization of peptide antibodies. Methods 56:136–144. doi:10.1016/j.ymeth.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  • van Oss CJ, Good RJ, Chaudhury MK (1986) Nature of the antigen-antibody interaction. Primary and secondary bonds: optimal conditions for association and dissociation. J Chromatogr 376:111–119. doi:10.1016/S0378-4347(00)80828-2

    Article  PubMed  Google Scholar 

  • Wilson ME, Boumaza I, Bowser R (2013) Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 10:15. doi:10.1186/2045-8118-10-15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Ralf Hoffmann for lab access, fruitful discussions and proof-reading. We gratefully acknowledge the technical assistance of Stefanie Langanke for synthesizing and purifying peptides. This work was supported by the Federal Ministry of Education and Research (BMBF) Go-Bio Project No. 031598870 to TZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kreisig.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: D. Tsikas.

T. Kreisig and T. Zuchner contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobslaff, K., Zscharnack, K., Kreisig, T. et al. Rational design of a low-affinity peptide for the detection of cystatin C in a fast homogeneous immunoassay. Amino Acids 48, 479–486 (2016). https://doi.org/10.1007/s00726-015-2101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2101-3

Keywords

Navigation