Abstract
Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability (\( \alpha \)), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices.
This is a preview of subscription content, access via your institution.






Abbreviations
- DFT:
-
Density functional theory
- EHOMO :
-
Highest occupied molecular orbital energy
- ELUMO :
-
Lowest unoccupied molecular orbital energy
- TNC:
-
Total negative charges on atoms
- MV:
-
Molecular volume
- TE:
-
Total energy
- SCRF:
-
Self-consistent reaction field
- PCM:
-
Polarized continuum model
- MPP:
-
Minimum polarizability principle
- MPP:
-
Minimum polarizability principle
- NBO:
-
Natural bond orbital
- NPA:
-
Natural population analysis
References
Abdel-Fatah HM, Abdel-Samad H, Hassan AM, El-Sehiety HE (2014) Effect of variation of the structure of amino acids on inhibition of the corrosion of low-alloy steel in ammoniated citric acid solutions. Res Chem Intermed 40(4):1675–1690. doi:10.1007/s11164-013-1073-8
Aouniti AKKF, Hammouti B (2013) Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of armco iron in molar HCl. Int J Electrochem 8:5925–5943
Arslan T, Kandemirli F, Ebenso EE, Love I, Alemu H (2009) Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros Sci 51(1):35–47. doi:10.1016/j.corsci.2008.10.016
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100
Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913
Bereket G, Öğretir C, Özşahin Ç (2003) Quantum chemical studies on the inhibition efficiencies of some piperazine derivatives for the corrosion of steel in acidic medium. J Mol Struct (Thoechem) 663(1–3):39–46. doi:10.1016/j.theochem.2003.08.062
Cao Z, Tang Y, Cang H, Xu J, Lu G, Jing W (2014) Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: theoretical studies. Corros Sci 83:292–298. doi:10.1016/j.corsci.2014.02.025
Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100(40):16126–16130. doi:10.1021/jp961096f
Ebenso EE, Arslan T, Kandemirli F, Caner N, Love I (2010) Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. Int J Quantum Chem 110(5):1003–1018. doi:10.1002/qua.22249
Frisch MJT GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian 03, Revision C.02. Gaussian 03, Revision C02 (Gaussian, Inc, Wallingford CT)
Fu J-J, Li S-N, Cao L-H, Wang Y, Yan L-H, Lu L-D (2010) l-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution. J Mater Sci 45(4):979–986. doi:10.1007/s10853-009-4028-0
Fuentealba P, Pérez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113(7):2544–2551. doi:10.1063/1.1305879
Fukui K (1982) The role of frontier orbitals in chemical reactions (Nobel Lecture). Angew Chem Int Ed Engl 21(11):801–809. doi:10.1002/anie.198208013
Gece G (2011) Drugs: a review of promising novel corrosion inhibitors. Corros Sci 53(12):3873–3898. doi:10.1016/j.corsci.2011.08.006
Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97(19):4951–4953. doi:10.1021/j100121a015
Hmamou DB, Salghi R, Zarrouk A, Zarrok H, Touzani R, Hammouti B, El Assyry A (2015) Investigation of corrosion inhibition of carbon steel in 0.5 M H2SO4 by new bipyrazole derivative using experimental and theoretical approaches. J Environ Chem Eng 3(3):2031–2041. doi:10.1016/j.jece.2015.03.018
Hohm U (2000) Is there a minimum polarizability principle in chemical reactions? J Phys Chem A 104(36):8418–8423. doi:10.1021/jp0014061
Hosseini MG, Ehteshamzadeh M, Shahrabi T (2007) Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution. Electrochim Acta 52(11):3680–3685. doi:10.1016/j.electacta.2006.10.041
Issa IM, Samahy AAE, Temerk YM (1970) Surface activity of some amino compounds. J Chem UAR 13:121–126
Jensen F (2006) Introduction to computational chemistry, 2nd edn. John Wiley, England
Khaled KF (2008) Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochim Acta 53(9):3484–3492. doi:10.1016/j.electacta.2007.12.030
Khaled KF (2010) Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochim Acta 55(22):6523–6532. doi:10.1016/j.electacta.2010.06.027
Kokalj A (2010) Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim Acta 56(2):745–755. doi:10.1016/j.electacta.2010.09.065
Kokalj A (2012) On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem Phys 393(1):1–12. doi:10.1016/j.chemphys.2011.10.021
Kovačević N, Kokalj A (2011) DFT study of interaction of azoles with Cu(111) and Al(111) surfaces: role of azole nitrogen atoms and dipole-dipole interactions. J Phys Chem C 115(49):24189–24197. doi:10.1021/jp207076w
Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789
Li X, Deng S, Fu H, Mu G (2009) Synergistic inhibition effect of rare earth cerium(IV) ion and 3,4-dihydroxybenzaldehye on the corrosion of cold rolled steel in H2SO4 solution. Corros Sci 51(11):2639–2651. doi:10.1016/j.corsci.2009.06.047
Liu A, Ren X, Zhang J, Wang C, Yang P, Zhang J, An M, Higgins D, Li Q, Wu G (2014) Theoretical and experimental studies of the corrosion inhibition effect of nitrotetrazolium blue chloride on copper in 0.1 M H2SO4. RSC. Advances 4(76):40606–40616. doi:10.1039/C4RA05274A
Lukovits I, Kálmán E, Zucchi F (2001) Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57(1):3–8. doi:10.5006/1.3290328
Masoud MS, Awad MK, Shaker MA, El-Tahawy MMT (2010) The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel. Corros Sci 52(7):2387–2396. doi:10.1016/j.corsci.2010.04.011
Mourya P, Singh P, Tewari AK, Rastogi RB, Singh MM (2015) Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corros Sci 95:71–87. doi:10.1016/j.corsci.2015.02.034
Nataraja SE, Venkatesha TV, Tandon HC, Shylesha BS (2011) Quantum chemical and experimental characterization of the effect of ziprasidone on the corrosion inhibition of steel in acid media. Corros Sci 53(12):4109–4117. doi:10.1016/j.corsci.2011.08.019
Nataraja SE, Venkatesha TV, Tandon HC (2012) Computational and experimental evaluation of the acid corrosion inhibition of steel by tacrine. Corros Sci 60:214–223. doi:10.1016/j.corsci.2012.03.034
Obot IB, Macdonald DD, Gasem ZM (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci. doi:10.1016/j.corsci.2015.01.037
Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050. doi:10.1021/ja00326a036
Parr RG, Gadre SR, Bartolotti LJ (1979) Local density functional theory of atoms and molecules. Proc Natl Acad Sci USA 76(6):2522–2526
Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. doi:10.1021/ic00277a030
Ro`man M (2005) Gas phase structure of sodiated amino acids probed by H/D exchange reactions. Croat Chem Acta 78(2):185–188
Saha SK, Roy Chowdhury A, Lohar AK, Murmu NC, Banerjee P (2014) Molecular dynamics and density functional theory study on corrosion inhibitory action of three substituted pyrazine derivatives on steel surface. Can Chem Trans 2(4):489–503
Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P (2015a) Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys Chem Chem Phy 17(8):5679–5690. doi:10.1039/C4CP05614K
Saha SK, Ghosh P, Hens A, Murmu NC, Banerjee P (2015b) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E 66:332–341. doi:10.1016/j.physe.2014.10.035
Şahin M, Gece G, Karcı F, Bilgiç S (2008) Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. J Appl Electrochem 38(6):809–815. doi:10.1007/s10800-008-9517-3
Sayed ET, Saito Y, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of yeast extract in biofuel cell. J Biosci Bioeng 114(5):521–525. doi:10.1016/j.jbiosc.2012.05.021
Shukla SK, Quraishi MA (2009) Cefotaxime sodium: a new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution. Corros Sci 51(5):1007–1011. doi:10.1016/j.corsci.2009.02.024
Shukla SK, Singh AK, Ahamad I, Quraishi MA (2009) Streptomycin: a commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Mater Lett 63(9–10):819–822. doi:10.1016/j.matlet.2009.01.020
Solomon MM, Umoren SA, Udosoro II, Udoh AP (2010) Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros Sci 52(4):1317–1325. doi:10.1016/j.corsci.2009.11.041
Wang H, Wang X, Wang H, Wang L, Liu A (2007) DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. J Mol Model 13(1):147–153. doi:10.1007/s00894-006-0135-x
Xia S, Qiu M, Yu L, Liu F, Zhao H (2008) Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corros Sci 50(7):2021–2029. doi:10.1016/j.corsci.2008.04.021
Yadav M, Behera D, Kumar S, Sinha RR (2013) Experimental and quantum chemical studies on the corrosion inhibition performance of benzimidazole derivatives for mild steel in HCl. Ind Eng Chem Res 52(19):6318–6328. doi:10.1021/ie400099q
Yadav M, Kumar S, Bahadur I, Ramjugernath D (2014) Corrosion inhibitive effect of synthesized thiourea derivatives on mild steel in a 15% HCl solution. Int J Electrochem Sci 9:6529–6550
Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108(19):5708–5711. doi:10.1021/ja00279a008
Zevallos J, Toro-Labbé A (2003) A theoretical analysis of the Kohn-Sham and Hartree-Fock orbitals and their use in the determination of electronic properties. J Chil Chem Soc 48:39–47
Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195. doi:10.1021/jp0225774
Zhang J-M, Wang D-D, Xu K-W (2006) Calculation of the surface energy of bcc transition metals by using the second nearest-neighbor modified embedded atom method. Appl Surf Sci 252(23):8217–8222. doi:10.1016/j.apsusc.2005.10.043
Zhao B, Debski EA (2005) Serotonergic reticular formation cells in Rana pipiens: categorization, development, and tectal projections. J Comp Neurol 487(4):441–456. doi:10.1002/cne.20593
Acknowledgments
We gratefully acknowledge financial support from the Research Council of the University of Sistan and Baluchestan.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.
Additional information
Handling Editor: D. Tsikas.
Rights and permissions
About this article
Cite this article
Dehdab, M., Shahraki, M. & Habibi-Khorassani, S.M. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors. Amino Acids 48, 291–306 (2016). https://doi.org/10.1007/s00726-015-2090-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-015-2090-2
Keywords
- Corrosion
- Inhibitory efficiency
- Amino acid
- DFT
- Steel