Skip to main content
Log in

Genetic incorporation of recycled unnatural amino acids

Amino Acids Aims and scope Submit manuscript

Cite this article

Abstract

The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Chatterjee A, Guo J, Lee HS, Schultz PG (2013) A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 135:12540–12543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    Article  CAS  PubMed  Google Scholar 

  • Drienovska I, Rioz-Martinez A, Draksharapu A, Roelfes G (2015) Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem Sci 6:770–776

    Article  CAS  Google Scholar 

  • Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  • Jung JE, Lee SY, Park H, Cha H, Ko W, Sachin K, Kim DW, Chi DY, Lee HS (2014) Genetic incorporation of unnatural amino acids biosynthesized from α-keto acids by an aminotransferase. Chem Sci 5:1881–1885

    Article  CAS  Google Scholar 

  • Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012a) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4:298–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012b) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic diels–alder reactions. J Am Chem Soc 134:10317–10320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HS, Schultz PG (2008) Biosynthesis of a site-specific DNA cleaving protein. J Am Chem Soc 130:13194–13195

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Spraggon G, Schultz PG, Wang F (2009a) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131:2481–2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HS, Guo J, Lemke EA, Dimla RD, Schultz PG (2009b) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 131:12921–12923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YJ, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) A genetically encoded acrylamide functionality. ACS Chem Biol 8:1664–1670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG (2007) Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 3:769–772

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  • Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Ed 50:3878–3881

    Article  CAS  Google Scholar 

  • Schmidt MJ, Borbas J, Drescher M, Summerer D (2014) A genetically encoded spin label for electron paramagnetic resonance distance measurements. J Am Chem Soc 136:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc 134:2898–2901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed 44:34–66

    Article  CAS  Google Scholar 

  • Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128:8738–8739

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Liu W, Schultz PG (2007) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed 46:9239–9242

    Article  CAS  Google Scholar 

  • Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 24:1187–1197

    Article  Google Scholar 

  • Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014003870).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyubong Jo or Hyun Soo Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: S. Murch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, W., Kim, S., Jo, K. et al. Genetic incorporation of recycled unnatural amino acids. Amino Acids 48, 357–363 (2016). https://doi.org/10.1007/s00726-015-2087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2087-x

Keywords

Navigation