Advertisement

Amino Acids

, Volume 48, Issue 1, pp 41–51 | Cite as

The role of leucine and its metabolites in protein and energy metabolism

  • Yehui Duan
  • Fengna LiEmail author
  • Yinghui Li
  • Yulong Tang
  • Xiangfeng Kong
  • Zemeng Feng
  • Tracy G. Anthony
  • Malcolm Watford
  • Yongqing Hou
  • Guoyao Wu
  • Yulong YinEmail author
Original Article

Abstract

Leucine (Leu) is a nutritionally essential branched-chain amino acid (BCAA) in animal nutrition. It is usually one of the most abundant amino acids in high-quality protein foods. Leu increases protein synthesis through activation of the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle, adipose tissue and placental cells. Leu promotes energy metabolism (glucose uptake, mitochondrial biogenesis, and fatty acid oxidation) to provide energy for protein synthesis, while inhibiting protein degradation. Approximately 80 % of Leu is normally used for protein synthesis, while the remainder is converted to α-ketoisocaproate (α-KIC) and β-hydroxy-β-methylbutyrate (HMB) in skeletal muscle. Therefore, it has been hypothesized that some of the functions of Leu are modulated by its metabolites. Both α-KIC and HMB have recently received considerable attention as nutritional supplements used to increase protein synthesis, inhibit protein degradation, and regulate energy homeostasis in a variety of in vitro and in vivo models. Leu and its metabolites hold great promise to enhance the growth and health of animals (including humans, birds and fish).

Keywords

Leucine α-Ketoisocaproate β-Hydroxy-β-methylbutyrate Protein metabolism Energy homeostasis Pigs 

Abbreviations

α-KG

α-Ketoglutarate

α-KIC

α-Ketoisocaproate

4E-BP1

4E-binding protein 1

AMPK

AMP-activated protein kinase

ATP

Adenosine triphosphate

BCAA

Branched-chain amino acid

BCAT

Branched-chain amino-acid aminotransferase

BCKD

Branched-chain α-keto acid dehydrogenase

eIF2α

Eukaryotic initiation factor 2α

eIF4E

Eukaryotic initiation factor 4E

eIF4G

Eukaryotic initiation factor-4G

FFA

Free fatty acid

GDH

Glutamate dehydrogenase

HMB

β-Hydroxy-β-methylbutyrate

HMG-CoA

β-Hydroxy-β-methylglutaryl-CoA

IGF-I

Insulin-like growth factor I

IVA-CoA

Isovaleryl CoA

KICD

KIC dioxygenase

KICSIS

KIC-stimulated insulin secretion

LSIS

Leucine-stimulated insulin secretion

MAFbx

Muscle atrophy F-box

MAPK

Mitogen-activated protein kinase

mTOR

Mammalian target of rapamycin

mTORC1

Mammalian target of rapamycin complex 1

MuRF1

Muscle ring finger 1

NF-κB

Nuclear factor-κB

PI3K

Phosphoinositide-3-OH kinase

PKC

Protein kinase C

ROS

Reactive oxygen species

S6K1

p70 ribosomal protein S6 kinase

SIRT1

Silent information regulator transcript 1

Notes

Acknowledgments

This study was jointly supported by National Basic Research Program of China (2013CB127305, 2012CB124704), National Nature Science Foundation of China (31110103909, 31330075), The Chinese Academy of Science STS Project (KFJ-EW-STS-063), Key Projects in the National Science & Technology Pillar Program (2013BAD21B04), the Hubei Hundred Talent program, and Texas A&M AgriLife Research (H-8200).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT (2013) beta-Hydroxy-beta-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 48(9):973–984PubMedCrossRefGoogle Scholar
  2. Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS (2000a) Orally administered leucine stimulates protein synthesis in skeletal muscle of post-absorptive rats in association with increased eIF4F formation. J Nutr 130:139–145PubMedGoogle Scholar
  3. Anthony JC, Yoshizawa F, Anthony TG, Kimball SR, Jefferson LS (2000b) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419PubMedGoogle Scholar
  4. Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 282(5):E1092–E1101PubMedCrossRefGoogle Scholar
  5. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38(5):1533–1539PubMedCrossRefGoogle Scholar
  6. Baptista IL, Silva WJ, Artioli GG, Guilherme JPLF, Leal ML, Aoki MS, Miyabara EH, Moriscot AS (2013) Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions. PLoS ONE 8(10):e76752PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baracos VE, Mackenziey ML (2006) Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr 136(1):237S–242SPubMedGoogle Scholar
  8. Baum JI, O’Connor JC, Seyler JE, Anthony TG, Freund GG, Layman DK (2005) Leucine reduces the duration of insulin-induced PI 3-kinase activity in rat skeletal muscle. Am J Physiol Endocrinol Metab 288(1):E86–E91PubMedCrossRefGoogle Scholar
  9. Baxter JH, Carlos JL, Thurmond J, Rehani RN, Bultman J, Frost D (2005) Dietary toxicity of calcium beta-hydroxy-beta-methyl butyrate (CaHMB). Food Chem Toxicol 43(12):1731–1741PubMedCrossRefGoogle Scholar
  10. Bodine SC, Latres E, Baumhueter S, Lai VKM, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na EQ, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708PubMedCrossRefGoogle Scholar
  11. Bolster DR, Jefferson LS, Kimball SR (2004a) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63(2):351–356PubMedCrossRefGoogle Scholar
  12. Bolster DR, Vary TC, Kimball SR, Jefferson LS (2004b) Leucine regulates translation initiation in rat skeletal muscle via enhanced eIF4G phosphorylation. J Nutr 134(7):1704–1710PubMedGoogle Scholar
  13. Buse MG, Reid SS (1975) Leucine. A possible regulator of protein turnover in muscle. J Clin Invest 56(5):1250–1261PubMedPubMedCentralCrossRefGoogle Scholar
  14. Busquets S, Alvarez B, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM (2000) Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol 184(3):380–384PubMedCrossRefGoogle Scholar
  15. Busquets S, Alvarez B, Lopez-Soriano FJ, Argiles JM (2002) Branched-chain amino acids: a role in skeletal muscle proteolysis in catabolic states? J Cell Physiol 191:283–289PubMedCrossRefGoogle Scholar
  16. Caperuto EC, Tomatieli RV, Colquhoun A, Seelaender MCL, Rosa LFBPC (2007) beta-hydoxy-beta-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner. Clin Nutr 26(1):117–122PubMedCrossRefGoogle Scholar
  17. Chua BD, Siehl L, Morgan HE (1979) Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem 254:8358–8362PubMedGoogle Scholar
  18. Columbus DA, Fiorotto ML, Davis TA (2014) Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 47:259–270PubMedCrossRefGoogle Scholar
  19. Dai ZL, Wu ZL, Yang Y, Wang JJ, Satterfield MC, Meininger CJ, Bazer FW, Wu G (2013) Nitric oxide and energy metabolism in mammals. BioFactors 39:383–391PubMedCrossRefGoogle Scholar
  20. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544):1102–1105PubMedCrossRefGoogle Scholar
  21. Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11(3):222–226PubMedCrossRefGoogle Scholar
  22. Duan YH, Li FN, Liu HN, Li YH, Liu YY, Kong XF, Zhang YZ, Deng D, Tang YL, Feng ZM, Wu GY, Yin YL (2015a) Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Front Biosci (Landmark) 20:796–813CrossRefGoogle Scholar
  23. Duan YH, Li FN, Tan KR, Liu HN, Li YH, Liu YY, Kong XF, Tang YL, Wu GY, Yin YL (2015b) Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 47(5):857–867PubMedCrossRefGoogle Scholar
  24. Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ (2007) Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab 293(4):E923–E931PubMedCrossRefGoogle Scholar
  25. Eley HL, Russell ST, Tisdale MJ (2008) Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-alpha and angiotensin II by beta-hydroxy-beta-methylbutyrate. Am J Physiol Endocrinol Metab 295(6):E1417–E1426PubMedCrossRefGoogle Scholar
  26. Escobar J, Frank JW, Suryawan A, Nguyen HV, Van Horn CG, Hutson SM, Davis TA (2010) Leucine and alpha-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 140(8):1418–1424PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fahien LA, MacDonald MJ (2002) The succinate mechanism of insulin release. Diabetes 51(9):2669–2676PubMedCrossRefGoogle Scholar
  28. Filhiol TM (2012) The Effects of Leucine on Mitochondrial Biogenesis and Cell Cycle in A-375 Melanoma Cells. The University of Tennessee, KnoxvilleGoogle Scholar
  29. Fitschen PJ, Wilson GJ, Wilson JM, Wilund KR (2013) Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in elderly and clinical populations. Nutrition 29(1):29–36PubMedCrossRefGoogle Scholar
  30. Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721PubMedGoogle Scholar
  31. Fuller JC Jr, Sharp RL, Angus HF, Baier SM, Rathmacher JA (2011) Free acid gel form of beta-hydroxy-beta-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt. Br J Nutr 105(3):367–372PubMedCrossRefGoogle Scholar
  32. Garlick PJ (2005) The role of leucine in the regulation of protein metabolism. J Nutr 135(6):1553S–1556SPubMedGoogle Scholar
  33. Gerlinger-Romero F, Guimaraes-Ferreira L, Giannocco G, Nunes MT (2011) Chronic supplementation of beta-hydroxy-beta methylbutyrate (HMbeta) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm IGF Res 21(2):57–62PubMedCrossRefGoogle Scholar
  34. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci 98(25):14440–14445PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hall TR, Wallin R, Reinhart GD, Hutson SM (1993) Branched-chain aminotransferase isoenzymes—purification and characterization of the rat-brain isoenzyme. J Biol Chem 268(5):3092–3098PubMedGoogle Scholar
  36. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149(2):410–424PubMedCrossRefGoogle Scholar
  37. Hao Y, Jackson JR, Wang Y, Edens N, Pereira SL, Alway SE (2011) β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 301:R701–R715PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hasselgren PO (2014) beta-Hydroxy-beta-methylbutyrate (HMB) and prevention of muscle wasting. Metabolism 63(1):5–8PubMedCrossRefGoogle Scholar
  39. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. GENE DEV 18(16):1926–1945PubMedCrossRefGoogle Scholar
  40. Holecek M (2002) Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition 18(2):130–133PubMedCrossRefGoogle Scholar
  41. Holecek M, Muthny T, Kovarik M, Sispera L (2009) Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem Toxicol 47(1):255–259PubMedCrossRefGoogle Scholar
  42. Hutson SM, Wallin R, Hall TR (1992) Identification of mitochondrial branched-chain aminotransferase and its isoforms in rat-tissues. J Biol Chem 267(22):15681–15686PubMedGoogle Scholar
  43. Hutton JC, Sener A, Malaisse WJ (1979) Metabolism of 4-methyl-2-oxopentanoate in rat pancreatic-islets. Biochem J 184(2):291–301PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hutton JC, Sener A, Malaisse WJ (1980) Interaction of branched-chain amino-acids and keto acids upon pancreatic-islet metabolism and insulin-secretion. J Biol Chem 255(15):7340–7346PubMedGoogle Scholar
  45. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588PubMedCrossRefGoogle Scholar
  46. Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279:8452–8459PubMedCrossRefGoogle Scholar
  47. Kang CW, Tungsanga K, Walser M (1986) Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis. Am J Clin Nutr 43(4):504–509PubMedGoogle Scholar
  48. Kim SW, Mateo RD, Yin YL, Wu GY (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian Austral J Anim 20(2):295–306CrossRefGoogle Scholar
  49. Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011a) Select nutrients in the ovine uterine lumen: VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod 84:62–69PubMedCrossRefGoogle Scholar
  50. Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011b) Select nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol Reprod 84:1139–1147PubMedCrossRefGoogle Scholar
  51. Kleinert M, Liao YH, Nelson JL, Bernard JR, Wang WY, Ivy JL (2011) An amino acid mixture enhances insulin-stimulated glucose uptake in isolated rat epitrochlearis muscle. J Appl Physiol 111(1):163–169PubMedCrossRefGoogle Scholar
  52. Kornasio R, Riederer I, Butler-Browne G, Mouly V, Uni Z, Halevy O (2009) Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1793(5):755–763PubMedCrossRefGoogle Scholar
  53. Kovarik M, Muthny T, Sispera L, Holecek M (2010) Effects of beta-hydroxy-beta-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J Physiol Biochem 66(4):311–319PubMedCrossRefGoogle Scholar
  54. Lei J, Feng DY, Zhang YL, Zhao FQ, Wu ZL, San Gabriel A, Fujishima Y, Uneyama H, Wu G (2012a) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci 17:2725–2739CrossRefGoogle Scholar
  55. Lei J, Feng DY, Zhang YL, Dahanayaka S, Li XL, Yao K, Wang JJ, Wu ZL, Dai ZL, Wu G (2012b) Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 43:2179–2189PubMedCrossRefGoogle Scholar
  56. Lei J, Feng DY, Zhang YL, Dahanayaka S, Li XL, Yao K, Wang JJ, Wu ZL, Dai ZL, Wu G (2013) Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids 45:531–541PubMedCrossRefGoogle Scholar
  57. Li P, Yin YL, Li DF, Kim SW, Wu GY (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  58. Li P, Knabe DA, Kim SW, Lynch CJ, Hutson SM, Wu G (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li F, Yin Y, Tan B, Kong X, Wu G (2011a) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41(5):1185–1193PubMedCrossRefGoogle Scholar
  60. Li XL, Rezaei R, Li P, Wu G (2011b) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168PubMedCrossRefGoogle Scholar
  61. Liang C, Curry BJ, Brown PL, Zemel MB (2014) Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J Nutr Metab 2014:239750PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu H, Liu R, Xiong YF, Li X, Wang XL, Ma Y, Guo HL, Hao LP, Yao P, Liu LG, Wang D, Yang XF (2014) Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2. Amino Acids 46(8):1971–1979PubMedCrossRefGoogle Scholar
  63. Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC (2002) Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283(3):E503–E513PubMedCrossRefGoogle Scholar
  64. Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni ZH, Hutson SM (2003) Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab 285(4):E854–E863PubMedCrossRefGoogle Scholar
  65. Lynch CJ, Gern B, Lloyd C, Hutson SM, Eicher R, Vary TC (2006) Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab 291(3):E621–E630PubMedCrossRefGoogle Scholar
  66. MacDonald MJ (2007) Synergistic potent insulin release by combinations of weak secretagogues in pancreatic islets and INS-1 cells. J Biol Chem 282(9):6043–6052PubMedCrossRefGoogle Scholar
  67. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288(1):E1–E15PubMedCrossRefGoogle Scholar
  68. May PE, Barber A, D’Olimpio JT, Hourihane A, Abumrad NN (2002) Reversal of cancer-related wasting using oral supplementation with a combination of β-hydroxy-β-methylbutyrate, arginine, and glutamine. Am J Surg 183:471–479PubMedCrossRefGoogle Scholar
  69. Mitch WE, Clark AS (1984) Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 222:579–586PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mitchell JC, Evenson AR, Tawa NE (2004) Leucine inhibits proteolysis by the mTOR kinase signaling pathway in skeletal muscle. J Surg Res 121(2):311CrossRefGoogle Scholar
  71. Molfino A, Gioia G, Rossi Fanelli F, Muscaritoli M (2013) Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids 45(6):1273–1292PubMedCrossRefGoogle Scholar
  72. Mordier S, Deval C, Bechet D, Tassa A, Ferrara M (2000) Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275(38):29900–29906PubMedCrossRefGoogle Scholar
  73. Nakashima K, Ishida A, Yamazaki M, Abe H (2005) Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun 336(2):660–666PubMedCrossRefGoogle Scholar
  74. Nakashima K, Yakabe Y, Ishida A, Yamazaki M, Abe H (2007) Suppression of myofibrillar proteolysis in chick skeletal muscles by alpha-ketoisocaproate. Amino Acids 33(3):499–503PubMedCrossRefGoogle Scholar
  75. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K (2002) Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun 299(5):693–696PubMedCrossRefGoogle Scholar
  77. Nissen SL, Abumrad NN (1997) Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). Nutr Biochem 8(300–331):301Google Scholar
  78. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N (1996) Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81(5):2095–2104PubMedGoogle Scholar
  79. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci 102(40):14238–14243PubMedPubMedCentralCrossRefGoogle Scholar
  80. Noh KK, Chung KW, Choi YJ, Park MH, Jang EJ, Park CH, Yoon C, Kim ND, Kim MK, Chung HY (2014) beta-Hydroxy beta-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS One 9(7):e102947PubMedPubMedCentralCrossRefGoogle Scholar
  81. O’Connor PMJ, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA (2003) Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 285(1):E40–E53PubMedCrossRefGoogle Scholar
  82. Panton LB, Rathmacher JA, Baier S, Nissen S (2000) Nutritional supplementation of the leucine metabolite β-Hydroxy-β-Methylbutyrate (HMB) during resistance training. Nutrition 16(9):734–739PubMedCrossRefGoogle Scholar
  83. Pimentel GD, Rosa JC, Lira FS, Zanchi NE, Ropelle ER, Oyama LM, Oller do Nascimento CM, de Mello MT, Tufik S, Santos RV (2011) beta-Hydroxy-beta-methylbutyrate (HMbeta) supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway. Nutr Metab (Lond) 8(1):11CrossRefGoogle Scholar
  84. Pinheiro CH, Gerlinger-Romero F, Guimaraes-Ferreira L, de Souza-Jr AL, Vitzel KF, Nachbar RT, Nunes MT, Curi R (2012) Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle. Eur J Appl Physiol 112(7):2531–2537PubMedCrossRefGoogle Scholar
  85. Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD (2005) alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 289(2):E218–E224PubMedCrossRefGoogle Scholar
  86. Ransone J, Neighbors K, Lefavi R, Chromiak J (2003) The effect of β-Hydroxy β-Methylbutyrate on muscular strength and body composition in collegiate football players. The Journal of Strength and Conditioning Research 17(1):34–39PubMedGoogle Scholar
  87. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  88. Rudney H (1957) The biosynthesis of Beta-Hydroxy-Beta-Methylglutaric acid. J Biol Chem 227(1):363–377PubMedGoogle Scholar
  89. Russell ST, Tisdale MJ (2009) Mechanism of attenuation by beta-hydroxy-beta-methylbutyrate of muscle protein degradation induced by lipopolysaccharide. Mol Cell Biochem 330(1–2):171–179PubMedCrossRefGoogle Scholar
  90. Self JT, Spencer TE, Johnson GA, Hu J, Bazer FW, Wu G (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451PubMedCrossRefGoogle Scholar
  91. Sener A, Malaisse WJ (1980) l-Leucine and a nonmetabolized analog activate pancreatic-islet glutamate-dehydrogenase. Nature 288(5787):187–189PubMedCrossRefGoogle Scholar
  92. She PX, Olson KC, Kadota Y, Inukai A, Shimomura Y, Hoppel CL, Adams SH, Kawamata Y, Matsumoto H, Sakai R, Lang CH, Lynch CJ (2013) Leucine and protein metabolism in obese zucker rats. PLoS One 8(3):e59443PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shigemitsu K, Tsujishita Y, Miyake H, Hidayat S, Tanaka N, Hara K, Yonezawa K (1999) Structural requirement of leucine for activation of p70 S6 kinase. FEBS Lett 447(2–3):303–306PubMedCrossRefGoogle Scholar
  94. Slater GJ, Jenkins D (2000) beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Med 30(2):105–116PubMedCrossRefGoogle Scholar
  95. Smith HJ, Wyke SM, Tisdale MJ (2004) Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate. Cancer Res 64:8731–8735PubMedCrossRefGoogle Scholar
  96. Smith HJ, Mukerji P, Tisdale MJ (2005) Attenuation of proteasome-induced proteolysis in skeletal muscle by β-Hydroxy-β-Methylbutyrate in cancer-induced muscle loss. Cancer Res 65(1):277–283PubMedGoogle Scholar
  97. Stancliffe RA (2012) Role of beta-hydroxy-beta-methylbutyrate (hmb) in leucine stimulation of mitochondrial biogenesis and fatty acid oxidation. The University of Tennessee, KnoxvilleGoogle Scholar
  98. Stancliffe RA, Zemel MB (2012) Role of beta-hydroxy-beta-methylbutyrate (HMB) in leucine stimulation of muscle mitochondrial biogenesis. FASEB J 26:251.6Google Scholar
  99. Stancliffe RA, Eades M, Smart K, Zemel MB (2011) Role of mTOR and beta-hydroxy-beta-methylbutyrate (HMB) in leucine stimulation of muscle mitochondrial biogenesis and fatty acid oxidation. FASEB J 25:606.1Google Scholar
  100. Su Y, Lam TKT, He W, Pocai A, Bryan J, Aguilar-Bryan L, Gutierrez-Juarez R (2012) Hypothalamic leucine metabolism regulates liver glucose production. Diabetes 61(1):85–93PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sun X, Zemel MB (2007) Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 42(4):297–305PubMedCrossRefGoogle Scholar
  102. Sun X, Zemel MB (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 6:26CrossRefGoogle Scholar
  103. Sun YL, Wu ZL, Li W, Zhang C, Sun KJ, Ji Y, Wang B, Jiao N, He BB, Wang WW, Dai ZL, Wu G (2015) Dietary l-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 47(8):1517–1525PubMedCrossRefGoogle Scholar
  104. Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68(1):72–81PubMedGoogle Scholar
  105. Suryawan A, Jeyapalan AS, Orellana RA, Wilson FA, Nguyen HV, Davis TA (2008) Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am J Physiol Endocrinol Metab 295(4):E868–E875PubMedPubMedCentralCrossRefGoogle Scholar
  106. Suzuki T, Inoki K (2011) Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin 43(9):671–679PubMedPubMedCentralCrossRefGoogle Scholar
  107. Talvas J, Obled A, Fafournoux P, Mordier S (2006) Regulation of protein synthesis by leucine starvation involves distinct mechanisms in mouse C2C12 myoblasts and myotubes. J Nutr 136(6):1466–1471PubMedGoogle Scholar
  108. Tekwe CD, Lei J, Yao K, Rezaei R, Li XL, Dahanayaka S, Carroll RJ, Meininger CJ, Bazer FW, Wu G (2013) Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. BioFactors 39:552–563PubMedCrossRefGoogle Scholar
  109. Tischler ME, Desautels M, Goldberg AL (1982) Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 257:1613–1621PubMedGoogle Scholar
  110. Toledo FG, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of inter-myofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 92(5):1827–1833Google Scholar
  111. Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, Cooney GJ (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle—evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56(8):2085–2092PubMedCrossRefGoogle Scholar
  112. Van Koevering M, Nissen S (1992) Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol 262(1 Pt 1):E27–E31PubMedGoogle Scholar
  113. Van Someren KA, Edwards AJ, Howatson G (2005) Supplementation with β-hydroxy- β-methylbutyrate (HMB) and α-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab 15:413–424PubMedGoogle Scholar
  114. Vankoningsloo S, Piens M, Lecocq C, Gilson A, De Pauw A, Renard P, Demazy C, Houbion A, Raes M, Arnould T (2005) Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose. J Lipid Res 46(6):1133–1149PubMedCrossRefGoogle Scholar
  115. Wheatley SM, El-Kadi SW, Suryawan A, Boutry C, Orellana RA, Nguyen HV, Davis SR, Davis TA (2014) Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate. Am J Physiol Endocrinol Metab 306(1):E91–E99PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ (2013) Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 591(Pt 11):2911–2923PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wilson GJ, Wilson JM, Manninen AH (2008) Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond) 5:1CrossRefGoogle Scholar
  118. Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca RatonCrossRefGoogle Scholar
  119. Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411PubMedCrossRefGoogle Scholar
  120. Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943PubMedCrossRefGoogle Scholar
  122. Wu G, Thompson JR, Sedgwick G, Drury M (1989) Formation of alanine and glutamine in chick (Gallus domesticus) skeletal muscle. Comp Biochem Physiol 93B:609–613Google Scholar
  123. Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ (2007a) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685PubMedGoogle Scholar
  124. Wu GY, Bazer FW, Davis TA, Johnson GA, Kim SW, Knabe DA, Spencer TE, Yin YL (2007b) Important roles for arginine-family amino acids in swine nutrition and production. Livestock Science 122:8–22CrossRefGoogle Scholar
  125. Wu GY, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:169–175PubMedCrossRefGoogle Scholar
  126. Wu G, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin YL (2013a) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113PubMedCrossRefGoogle Scholar
  127. Wu G, Bazer FW, Satterfield MC, Li XL, Wang XQ, Johnson GA, Burghardt RC, Dai ZL, Wang JJ, Wu ZL (2013b) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256PubMedCrossRefGoogle Scholar
  128. Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417PubMedCrossRefGoogle Scholar
  129. Yang Y, Wu ZL, Meininger CJ, Wu G (2015) l-Leucine and NO-mediated cardiovascular function. Amino Acids 47:435–447PubMedCrossRefGoogle Scholar
  130. Yao K, Yin YL, Li XL, Xi PB, Wang JJ, Lei J, Hou YQ, Wu GY (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42(6):2491–2500PubMedCrossRefGoogle Scholar
  131. Yin Y, Yao K, Liu Z, Gong M, Ruan Z, Deng D, Tan B, Liu Z, Wu G (2010) Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39(5):1477–1486PubMedCrossRefGoogle Scholar
  132. Yoshizawa F, Sekizawa H, Hirayama S, Yamazaki Y, Nagasawa T, Sugahara K (2004) Tissue specific regulation 4E-BP1 and S6K1 phosphorylation by α-ketoisocaproate. J Nutr Sci Vitaminol (Tokyo) 50:56–60CrossRefGoogle Scholar
  133. Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L, de Siqueira MA, Felitti V, Lira FS, Seelaender M, Lancha AH (2011) HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 40(4):1015–1025PubMedCrossRefGoogle Scholar
  134. Zhang YY, Guo KY, LeBlanc RE, Loh D, Schwartz GJ, Yu YH (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6):1647–1654PubMedCrossRefGoogle Scholar
  135. Zhou Y, Jetton TL, Goshorn S, Lynch CJ, She P (2010) Transamination is required for alpha-ketoisocaproate but not leucine to stimulate insulin secretion. J Biol Chem 285(44):33718–33726PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yehui Duan
    • 1
    • 2
  • Fengna Li
    • 1
    Email author
  • Yinghui Li
    • 1
    • 2
  • Yulong Tang
    • 1
  • Xiangfeng Kong
    • 1
  • Zemeng Feng
    • 1
  • Tracy G. Anthony
    • 3
  • Malcolm Watford
    • 3
  • Yongqing Hou
    • 4
  • Guoyao Wu
    • 4
    • 5
  • Yulong Yin
    • 1
    • 4
    • 6
    Email author
  1. 1.Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Nutritional SciencesRutgers UniversityNew BrunswickUSA
  4. 4.Hubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic UniversityWuhanChina
  5. 5.Department of Animal ScienceTexas A&M UniversityCollege StationUSA
  6. 6.School of BiologyHunan Normal UniversityChangshaChina

Personalised recommendations