Skip to main content
Log in

Co-dependence of genotype and dietary protein intake to affect expression on amino acid/peptide transporters in porcine skeletal muscle

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A total of 96 barrows (48 pure-bred Bama mini-pigs representing fatty genotype, and 48 Landrace pigs representing lean genotype) were randomly assigned to either a low- or adequate-protein treatment diet. The experimental period commenced at 5 weeks of age and extended to the finishing period. After euthanasia, blood and skeletal muscle samples were collected from pigs at the nursery, growing, and finishing phases. Our results indicate that the concentrations of free AAs in the plasma and muscle decreased as the age of the pigs increased. In addition, a strain × growth phase interaction (P < 0.05) was observed for the free AA pool in the plasma and muscle. The low-protein diet upregulated (P < 0.05) the mRNA levels for T1R1/T1R3 involved in glutamate binding, but downregulated (P < 0.05) the mRNA levels for PAT1, PAT2, and ASCT2, which transport neutral AAs into muscles. Bama mini-pigs had higher (P < 0.05) mRNA levels for LAT1, SNAT2, and EAAC1, but a lower (P < 0.05) mRNA level for PepT1, compared with Landrace pigs. Collectively, our findings indicate that adequate provision of dietary protein plays an important role in regulating profiles of free AA pools and expression of key AA/peptide transporters/transceptors in a genotype- and tissue-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird FE, Bett KJ, MacLean C et al (2009) Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in Xenopus oocytes. Am J Physiol-Endoc M 3:E822–E829

    Google Scholar 

  • Blachier F, Mariotti F, Huneau JF et al (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 4:547–562

    Article  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 3:814s–821s

    Article  CAS  Google Scholar 

  • Blachier F, Wu G, Yin Y et al (2013) Developmental amino acid metabolism in the pig small and large intestine epithelial cells. In: Nutritional and physiological functions of amino acids in pigs. F. Blachier, G. Wu, and Y. Yin eds. Springer (Wien), pp 59–74

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Davis TA, Ebner S et al (1995) Nutrient-independent and nutrient-dependent factors stimulate protein synthesis in colostrum-fed newborn pigs. Pediatr Res 5:593–599

    Article  Google Scholar 

  • Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 4:611–622

    Article  CAS  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 1:143–152

    Article  CAS  Google Scholar 

  • Chen RJ, Yin YL, Pan J, Gao YL, Li TJ (2011) Expression profiling of IGFs and IGF receptors in piglets with intrauterine growth restriction. Livestock Science 136:72–75

    Article  Google Scholar 

  • Chen S, Liu S, Zhang F, Ren WK, Li Z, Yin J, Duan JL, Peng YY, Liu G, Yin YL, Wu GY (2014) Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids. Amino Acids 46:2365–2375

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu GY, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC et al (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Hang SQ et al (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21:389–409

    Article  PubMed  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  PubMed  CAS  Google Scholar 

  • Davila AM, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 1:95–107

    Article  CAS  Google Scholar 

  • Deng D, Huang RL, Li TJ, Wu GY, Xie MY, Tang ZR, Kang P, Zhang YM, Fan MZ, Kong XF, Ruan Z, Xiong H, Deng ZY, Yin YL (2007a) Nitrogen balance in barrows fed low-protein diets supplemented with essential amino acids. Livestock Science 109:220–223

    Article  Google Scholar 

  • Deng D, Li AK, Chu WY, Huang RL, Li TJ, Kong XF, Liu ZJ, Wu GY, Zhang YM, Yin YL (2007b) Growth performance and metabolic responses in barrows fed low-protein diets supplemented with essential amino acids. Livestock Science 109:224–227

    Article  Google Scholar 

  • Deng D, Yao K, Chu WY, Li TJ, Huang RL, Yin YL, Liu HQ, Zhang JS, Wu GY (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Duan YH, Li FN, Liu HN et al (2015) Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Front Biosci-Landmark 20:796–813

    Article  Google Scholar 

  • Feng DY, Zhou XY, Zuo JJ et al (2008) Segmental distribution and expression of two heterodimeric amino acid transporter mRNAs in the intestine of pigs during different ages. J Sci Food Agr 6:1012–1018

    Article  CAS  Google Scholar 

  • Feng Z, Zhou XL, Wu F, Yao K, Kong XF, Li TJ, Blachier F, Yin YL (2014) Both dietary supplementation with monosodium l-glutamate and fat modify circulating and tissue amino acid pools in growing pigs, but with little interactive effect. PLoS One 9:e84533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng ZM,Li TJ, Wu L, Xiao DF, Blachier F, Yin YL (2015) Monosodium l-glutamate and/or dietary fat differently modifies the composition of the intestinal microbiota in growing pigs. Obesity Facts 8:87–100

  • Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45:419–430

    Article  PubMed  CAS  Google Scholar 

  • Fu DZ, Yang HS, Kong XF et al (2013) Molecular cloning and expression profiling of excitatory amino acid carrier 1 in suckling Huanjiang mini-piglets with large or small body weight at birth. Mol Biol Rep 4:3341–3350

    Article  CAS  Google Scholar 

  • Gang Chen, Zhang Jun, Zhang Yuzhe, Liao Peng, Li Tiejun, Chen Lixiang, Yin Yulong, Wang Jinquan, Guoyao Wu (2014) Oral MSG administration alters hepatic expression of genesfor lipid and nitrogen metabolism in suckling piglets. Amino Acids 46:245–250

    Article  CAS  Google Scholar 

  • Goberdhan DCI (2010) Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Curr Opin Invest Dr 12:1360–1367

    Google Scholar 

  • Goberdhan DCI, Meredith D, Boyd CAR et al (2005) PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development 10:2365–2375

    Article  CAS  Google Scholar 

  • He Q, Ren P, Kong X et al (2012) Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem 2:133–139

    Article  CAS  Google Scholar 

  • He LQ, Yang HS, Hou YQ, Li TJ, Fang J, Zhou XH, Yin YL, Wu L, Nyachoti M, Wu GY (2013) Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 45:383–391

    Article  PubMed  CAS  Google Scholar 

  • He LQ, Wu L, Xu ZQ et al (2015) Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids. doi:10.1007/s00726-015-2059-1

    Google Scholar 

  • Heublein S, Kazi S, Ogmundsdottir MH et al (2010) Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 28:4068–4079

    Article  CAS  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med. doi:10.1177/1535370215587913

    Google Scholar 

  • Houweling M, van der Drift SGA, Jorritsma R et al (2012) Technical note: quantification of plasma 1- and 3-methylhistidine in dairy cows by high-performance liquid chromatography-tandem mass spectrometry. J Dairy Sci 6:3125–3130

    Article  CAS  Google Scholar 

  • Hu SD, Li XL, Rezaei R et al (2015) Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 47:925–936

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WI et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Miyoshi N, Miura N et al (2011) Microminipig, a non-rodent experimental animal optimized for life science research: novel atherosclerosis model induced by high fat and cholesterol diet. J Pharmacol Sci 2:115–121

    Article  CAS  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 4:573–582

    Article  CAS  Google Scholar 

  • Kong XF, Tan B, Yin YL et al (2012) L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 9:1178–1183

    Article  CAS  Google Scholar 

  • Kong XF, Wang X, Yin YL, Li XL, Gao HJ, Bazer F, Wu GY (2014) Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod 91(106):1–10

    Google Scholar 

  • Li LL, Yin YL, Liu YH, Hou DX, Hou ZP, Yang CB, Yang XJ (2007) Intramuscular administration of zinc metallothionein to preslaughter stressed pigs improves anti-oxidative status and porl quality. Asian-Austr J Animal Sci 20:761–767

    Article  CAS  Google Scholar 

  • Li FN, Yin YL, Tan B et al (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 5:1185–1193

    Google Scholar 

  • Li FN, Duan YF, Li YF, Yin YL, geng MM, Oladele OA, Kim SW, Yin YL (2015) Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino 2 acid profile and gene expression of transporters in finishing pigs British Journal of Nutrition 113, 739–748

  • Liu XM, Reyna SV, Ensenat D et al (2004) Platelet-derived growth factor stimulates LAT1 gene expression in vascular smooth muscle: role in cell growth. FASEB J 18:768–770

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zeng BH, Shang HT et al (2008) Bama miniature pigs (sus scrofa domestica) as a model for drug evaluation for humans: comparison of in vitro metabolism and in vivo pharmacokinetics of lovastatin. Comp Med 6:580–587

    Google Scholar 

  • Liu YY, Li FN, He LQ et al (2015) Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner. Br J Nutr 113:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Ministry of Agriculture of the People’s Republic of China (2004) Feeding Standard of Swine (GB, NY/T 65-2004). China Agriculture Press, Beijing

    Google Scholar 

  • Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 4:1367–1373

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (2012) Nutrient requirements of swine. National Academy Press, Washington

    Google Scholar 

  • Nicklin P, Bergman P, Zhang BL et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 3:521–534

    Article  CAS  Google Scholar 

  • Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 1:22–44

    Article  Google Scholar 

  • Pinilla J, Aledo JC, Cwiklinski E et al (2011) SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci 3:1289–1299

    Google Scholar 

  • Ren W, Li Y, Yin Y et al (2013a) Structure, metabolism and functions of amino acids: An overview. In: Nutritional and physiological functions of amino acids in pigs, F. Blachier, G. Wu and Y. Yin Eds, Springer (Wien), pp 91–108

  • Ren WK, Liu SP, Chen S et al (2013b) Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 4:947–955

    Article  CAS  Google Scholar 

  • Ren WK, Yin J, Zhu XP, Liu G, Li NZ, Peng YY, Yin YL (2013c) Glutamine on intestinal inflammation: a mechanistic perspective. Euro J Inflamm 11:13–24

    Google Scholar 

  • Ren WK, Chen S, Yin J, Duan JL, Li TJ, Liu G, Feng ZM, Tan BE, Yin YL, Wu GY (2014a) Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity. J Nutr 144:568–579

    Article  CAS  Google Scholar 

  • Ren WK, Chen S, Yin J, Duan JL, Li TJ, Liu G, Feng ZM, Tan BE, Yin YL, Wu GY (2014b) Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. Amino Acids 46:2403–2413

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Yin J, Wu MM, Liu G, Yang G, Xion X, Su DD, Wu L, Li TJ, Chen S, Duan JL, Yin YL, Wu GY (2014c) Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS One 9:e88335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riedijk MA, Stoll B, Chacko S et al (2007) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci USA 9:3408–3413

    Article  CAS  Google Scholar 

  • Sales F, Pacheco D, Blair H et al (2013) Muscle free amino acid profiles are related to differences in skeletal muscle growth between single and twin ovine fetuses near term. SpringerPlus 1:1–9

    Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  PubMed  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 5882:1496–1501

    Article  CAS  Google Scholar 

  • Suryawan A, Davis TA (2010) The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age. J Appl Physiol 5:1448–1454

    Article  CAS  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci (Landmark Ed) 16:1445–1460

    Article  PubMed Central  CAS  Google Scholar 

  • Suryawan A, Nguyen HV, Almonaci RD et al (2013) Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 3:523–530

    Article  CAS  Google Scholar 

  • Swaid F, Sukhotnik I, Matter I et al (2013) Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following acetic acid induced intestinal injury in rats. Nutr Metab:1–9

  • Tait RG, Shackelford SD, Wheeler TL et al (2014) μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies. J Anim Sci 2:456–466

    Article  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 1:169–175

    Article  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ et al (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 5:441–445

    Article  CAS  Google Scholar 

  • Wang XM, Proud CG (2011) mTORC1 signaling: what we still don’t know. J Mol Cell Biol 4:206–220

    Article  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 6:1025–1032

    Google Scholar 

  • Wang WC, Shi CY, Zhang JS et al (2009) Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 4:593–601

    Article  CAS  Google Scholar 

  • Wang WC, Blachier F, Fu DZ et al (2013) Ontogenic expression of the amino acid transporter b0, + AT in suckling Huanjiang piglets: effect of intra-uterine growth restriction. Brit J Nutr 5:823–830

    Article  CAS  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL et al (2014a) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Wu ZL, Lin G et al (2014b) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small-intestinal epithelial cells. J Nutr 144:1540–1548

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang C, Wu G et al (2015a) Glutamine enhances tight-junction protein expression and modulates CRF signaling in the jejunum of weanling piglets. J Nutr 145:25–31

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ji Y, Wu G et al (2015b) L-Tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. J Nutr 145:1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu GY (1998) Intestinal mucosal amino acid catabolism. J Nutr 8:1249–1252

    Google Scholar 

  • Wu GY (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu GY (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2013a) Amino Acids: Biochemistry and Nutrition. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  PubMed  CAS  Google Scholar 

  • Wu GY (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2783S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: Mechanisms and implications for swine production. J Anim Sci:E195–E204

  • Wu X, Yin YL, Li TJ, Wang L, Ruan Z, Liu ZQ, Hou YQ (2010b) Dietary protein, energy and arginine affect LAT1 expression in forebrain white matter differently. Animal 4:1518–1521

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhang J, Liu ZQ, Li TJ, Yin YL (2012) Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa in piglets. J Anim Sci 90:337–339

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Shu XG, Xie CY, Li TJ, Hu J, Yin YL, Deng ZY (2013) The acute and chronic effects of monosodium l-glutamate on serum iron and total iron-binding capacity in the jugular. Artery and vein of pigs. Biol Trace Elem Res 153:191–195

  • Wu G, Wu ZL, Dai ZL et al (2013a) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Xie C, Yin YL, Li FN, Li TJ, Huang RL, Deng ZY (2013b) Effect of l-arginine on HSP70 expression in liver in weanling piglets. BMC Veterinary Research 9:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G, Fanzo J, Miller DD et al (2014a) Production and supply of high-quality food protein for human consumption: sustainability, challenges and innovations. Ann NY Acad Sci 1321:1–19

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cross HR (2014b) Land-based production of animal protein: impacts, efficiency, and sustainability. Ann NY Acad Sci 1328:18–28

    Article  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014c) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Xie CY, Zhang YZ, Fan ZY, Yin YL, Blachier F (2015) Glutamate–glutamine cycle and exchange in the placenta–fetus unit during late pregnancy. Amino Acids 47:45–53

    Article  PubMed  CAS  Google Scholar 

  • Xiao,H, Wu MM, Shao FY, Tan BE, Li TJ Ren WK, Yin J,. Wang Q. He H, Yin YL, Hou RQ (2015) Metabolic profiles in the response to supplementation with composite antimicrobial peptides in piglets challenged with deoxynivalenol. J Anim Sci. doi:10.2527/jas2014-8229

  • Tang YL, Tan BE, Xiong X, L FN, Ren WK, Kong XF, Qiu W, Hardwidge P, Yin YL (2014) Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids. DOI 10.1007/s00726-014-1781-4

  • Yang CB, Li AK, Yi YL, Huang RL, Li TJ, Li LL, Liao YP, Deng ZY, Zhong HY, Yang XJ, Fan MZ (2005) Effects of dietary supplementation of cysteamine on growth performance, carcass quality, serum hormones and gastric ulcer in finishing pigs. J Sci Food Agric 85:1947–1952

    Article  CAS  Google Scholar 

  • Yang HS, Fu DZ, Kong XF et al (2013) Dietary supplementation with N-carbamylglutamate increases the expression of intestinal amino acid transporters in weaned Huanjiang mini-pig piglets. J Anim Sci 6:2740–2748

    Article  Google Scholar 

  • Yang YX, Dai ZL, Zhu WY (2014) Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46:2489–2501

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 5:867–872

    Google Scholar 

  • Yin YL and Tan BE (2010) Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. J Food Agri Environ 8:447–462

  • Yin FG, Liu YL, Yin YL et al (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 2:263–270

    Article  CAS  Google Scholar 

  • Yin J, Ren WK, Duan JL, Wu L, Chen S, Li TJ, Yin YL, Wu GY (2014) Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 46:883–892

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Duan LJ, Cui ZJ, Ren WK, Li TJ, Yin YL (2015) Hydrogen peroxide-induced oxidative stress activates NF-kB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Adv. 5:15479–15486

    Article  CAS  Google Scholar 

  • Yoneda J, Andou A, Takehana K (2009) Regulatory roles of amino acids in immune response. Curr Rheumatol Rev 4:252–258

    Article  Google Scholar 

  • Zhang J, Yin YJ, Shu X, Li TJ, Li FN, Tan BE, Wu ZL, Wu GY (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Bio 1:21–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was jointly supported by grants from the National Basic Research Program of China (No. 2012CB124704 and 2013CB127305), National Nature Science Foundation of China (31372325, 31270044), K.C. Wong Education Foundation (Hong Kong), and Texas A&M AgriLife Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Kong or Y. Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kong, X., Li, F. et al. Co-dependence of genotype and dietary protein intake to affect expression on amino acid/peptide transporters in porcine skeletal muscle. Amino Acids 48, 75–90 (2016). https://doi.org/10.1007/s00726-015-2066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2066-2

Keywords

Navigation