Skip to main content

Advertisement

Log in

Safety of long-term dietary supplementation with l-arginine in rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study was conducted with rats to determine the safety of long-term dietary supplementation with l-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % l-arginine and received drinking water containing l-arginine-HCl (0, 1.8, or 3.6 g l-arginine/kg body-weight/day; n = 10/group). These supplemental doses of l-arginine were equivalent to 0, 286, and 573 mg l-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with l-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. l-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. l-Arginine supplementation reduced plasma levels of leptin. Additionally, l-arginine supplementation increased l-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by l-arginine. Collectively, these results indicate that dietary supplementation with l-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g l-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of l-arginine to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetrical dimethylarginine

AGAT:

l-Arginine:glycine amidinotransferase

Arg:

l-Arginine

BW:

Body weight

hArg:

l-Homoarginine

HPLC:

High-performance liquid chromatography

NMMA:

NG-monomethylarginine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOx:

Nitrate plus nitrite

SDMA:

Symmetrical dimethylarginine

References

  • Agostinelli E (2014) Polyamines and transglutaminases: biological, clinical, and biotechnological perspectives. Amino Acids 46:475–485

    Article  CAS  PubMed  Google Scholar 

  • Assaad H, Yao K, Tekwe CD et al (2014a) Analysis of energy expenditure in diet-induced obese rats. Front Biosci 19:967–985

    Article  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ et al (2014b) Rapid publication-ready MS-Word tables for one-way ANOVA. Springer Plus 3:474

    Article  PubMed Central  PubMed  Google Scholar 

  • Atzler D, Schwedhelm E, Choe CU (2015) l-homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care 18:83–88

    Article  CAS  PubMed  Google Scholar 

  • Beaumier L, Castillo L, Ajami AM et al (1995) Urea cycle intermediate kinetics and nitrate excretion at normal and “therapeutic” intakes of arginine in humans. Am J Physiol Endocrinol Metab 269:E884–E896

    CAS  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R et al (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci (Landmark Ed) 16:1331–1343

    Article  CAS  Google Scholar 

  • Boger RH, Bode-Boger SM (2001) The clinical pharmacology of l-arginine. Annu Rev Pharmacol Toxicol 41:79–99

    Article  CAS  PubMed  Google Scholar 

  • Breuillard C, Cynober L, Moinard C (2015) Citrulline and nitrogen homeostasis: an overview. Amino Acids 47:685–691

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  CAS  PubMed  Google Scholar 

  • Castillo L, Chapman TE, Yu YM et al (1993) Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab 265:E532–E539

    CAS  Google Scholar 

  • Chin-Dusting JP, Alexander CT, Arnold PJ et al (1996) Effects of in vivo and in vitro l-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol 28:158–166

    Article  CAS  PubMed  Google Scholar 

  • Cicero AF, Colletti A (2015) Nutraceuticals and blood pressure control: results from clinical trials and meta-analyses. High Blood Press Cardiovasc Prev. doi:10.1007/s40292-015-0081-8

    Google Scholar 

  • Clarkson P, Adams MR, Powe AJ et al (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cynober L (2007) Pharmacokinetics of arginine and related amino acids. J Nutr 137:1646S–1649S

    CAS  PubMed  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y et al (2013) Nitric oxide and energy metabolism in mammals. Biofactors 39:383–391

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC et al (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Davids M, Ndika JD, Salomons GS et al (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657

    Article  CAS  PubMed  Google Scholar 

  • Evans RW, Fernstrom JD, Thompson J et al (2004) Biochemical responses of healthy subjects during dietary supplementation with l-arginine. J Nutr Biochem 15:534–539

    Article  CAS  PubMed  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE et al (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization/World Health Organization (FAO/WHO) (2006) A model for establishing upper levels of intake for nutrients and related substances. Technical Workshop on Nutrient Risk Assessment, Geneva

    Google Scholar 

  • Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), U.S. Department of Health and Human Services (2005) Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers, Bethesda, MD

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  • Gornik HL, Creager MA (2004) Arginine and endothelial and vascular health. J Nutr 134:2880S–2887S

    CAS  PubMed  Google Scholar 

  • Grasemann H, Grasemann C, Kurtz F et al (2005) Oral l-arginine supplementation in cystic fibrosis patients: a placebo-controlled study. Eur Respir J 25:62–68

    Article  CAS  PubMed  Google Scholar 

  • Greene B, Pacitti AJ, Souba WW (1993) Characterization of L-arginine transport by pulmonary artery endothelial cells. Am J Physiol 264:L351–L356

    CAS  PubMed  Google Scholar 

  • Hayashi Y (2003) Application of the concept of risk assessment to the study of amino acid supplements. J Nutr 133:2021S–2024S

    CAS  PubMed  Google Scholar 

  • Hou YQ, Jia SC, Nawaratna G et al (2015) Analysis of L-homoarginine in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino Acids. doi:10.1007/s00726-015-1962-9

    Google Scholar 

  • Hrabák A, Bajor T, Temesi A (1994) Comparison of substrate and inhibitor specificity of arginase and nitric oxide (NO) synthase for arginine analogues and related compounds in murine and rat macrophages. Biochem Biophys Res Commun 198:206–212

    Article  PubMed  Google Scholar 

  • Hu SD, Li XL, Rezaei R et al (2015) Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 47:925–936. doi:10.1007/s00726-015-1921-5

    Article  CAS  PubMed  Google Scholar 

  • Hurt RT, Ebbert JO, Schroeder DR et al (2014) l-Arginine for the treatment of centrally obese subjects: a pilot study. J Diet Suppl 11:40–52

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WS, Jobgen SC, Li H et al (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC et al (2009a) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009b) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kayacelebi AA, Willers J, Pham VV et al (2015) Plasma homoarginine, arginine, asymmetric dimethylarginine and total homocysteine interrelationships in rheumatoid arthritis, coronary artery disease and peripheral artery occlusion disease. Amino Acids. doi:10.1007/s00726-015-1915-3

    Google Scholar 

  • Khalil AA, Tsikas D, Akolekar R et al (2013) Asymmetric dimethylarginine, arginine and homoarginine at 11–13 weeks’ gestation and preeclampsia: a case-control study. J Hum Hypertens 27:38–43

    Article  CAS  PubMed  Google Scholar 

  • Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    CAS  PubMed  Google Scholar 

  • Leiper J, Vallance P (1999) Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 43:542–548

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Bazer FW, Johnson GA et al (2014) Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Fishman WH (1972) L-Homoarginine. An organ-specific, uncompetitive inhibitor of human liver and bone alkaline phosphohydrolases. J Biol Chem 247:3082–3087

    CAS  PubMed  Google Scholar 

  • Lucotti P, Setola E, Monti LD et al (2006) Beneficial effect of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: Potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • McNeal C, Wu G, Vasquez S et al (2010) The role of arginine for treating obese youth. In: Bagchi D (ed) Global Perspectives on Childhood Obesity. Elsevier, New York, pp 433–442

    Google Scholar 

  • Michel T (2013) R is for arginine: metabolism of arginine takes off again, in new directions. Circulation 128:1400–1404

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609S

    CAS  PubMed  Google Scholar 

  • Phang JM, Liu W (2012) Proline metabolism and cancer. Front Biosci (Landmark Ed) 17:1835–1845

    Article  CAS  Google Scholar 

  • Popolo A, Adesso S, Pinto A et al (2014) l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 46:2271–2286

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Ryan WL, Wells IC (1964) Homocitrulline and homoarginine synthesis from lysine. Science 144:1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123:294–297

    Article  CAS  PubMed  Google Scholar 

  • Ryan WL, Johnson RJ, Dimari S (1969) Homoarginine synthesis by rat kidney. Arch Biochem Biophys 131:521–526

    Article  CAS  PubMed  Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Schulman SP, Becker LC, Kass DA et al (2006) l-Arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE) randomized clinical trial. JAMA 295:58–64

    Article  CAS  PubMed  Google Scholar 

  • Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE et al (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    Article  CAS  PubMed  Google Scholar 

  • Tekwe CD, Lei J, Yao K et al (2013) Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. Biofactors 39:552–563

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Kayacelebi AA (2014) Do homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78:2094–2095

    Article  PubMed  Google Scholar 

  • Tsikas D, Böger RH, Sandmann J et al (2000) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsubuku S, Hatayama K, Mawatari K et al (2004) Thirteen-week oral toxicity study of l-arginine in rats. Int J Toxicol 23:101–105

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1995a) Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-l-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes 44:360–364

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1995b) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. Biofactors 35:21–27

    Article  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Ott TL, Knabe DA et al (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    CAS  PubMed  Google Scholar 

  • Wu G, Haynes TE, Li H et al (2000) Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Physiol A 126:115–123

    Article  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    CAS  PubMed  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007b) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu ZL, Satterfield MC, Bazer FW, Wu G (2012) Regulation of brown adipose tissue development and white fat reduction by l-arginine. Curr Opin Clin Nutr Metab Care 15:529–538

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wu ZL, Meininger CJ et al (2015) l-Leucine and NO-mediated cardiovascular function. Amino Acids 47:435–447

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the International Council of Amino Acid Science (Brussels, Belgium). We thank our graduate students and technicians for assistance in this work. Ying Yang was supported by a Fellowship from the China Scholarship Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The use of animals for this research was approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wu, Z., Jia, S. et al. Safety of long-term dietary supplementation with l-arginine in rats. Amino Acids 47, 1909–1920 (2015). https://doi.org/10.1007/s00726-015-1992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1992-3

Keywords

Navigation