Amino Acids

, Volume 47, Issue 9, pp 1763–1777 | Cite as

Mitochondrial transporters for ornithine and related amino acids: a review

  • Magnus Monné
  • Daniela Valeria Miniero
  • Lucia Daddabbo
  • Luigi Palmieri
  • Vito Porcelli
  • Ferdinando PalmieriEmail author
Review Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives


Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly in the mitochondrial matrix and to provide basic amino acids for mitochondrial translation. In the liver, human ORC1 catalyzes the citrulline/ornithine exchange across the mitochondrial inner membrane, which is required for the urea cycle. Human ORC1, ORC2, and SLC25A29 are likely to be involved in the biosynthesis and transport of arginine, which can be used as a precursor for the synthesis of NO, agmatine, polyamines, creatine, glutamine, glutamate, and proline, as well as in the degradation of basic amino acids. BAC1 and BAC2 are implicated in some processes similar to those of their human counterparts and in nitrogen and amino acid metabolism linked to stress conditions and the development of plants. Ort1p is involved in the biosynthesis of arginine and polyamines in yeast.


Mitochondrial carrier Mitochondrial transporter Ornithine Arginine Lysine Histidine Homoarginine Urea cycle Mitochondria Membrane transport 



Basic amino acid carrier 1


Basic amino acid carrier 2




Mitochondrial carrier


Nitric oxide


NO synthase


Ornithine carrier 1


Ornithine carrier 2


Member 29 of the SLC25 protein family



This work was supported by grants from the Ministero dell’Università e della Ricerca (MIUR), the Comitato Telethon Fondazione Onlus n. GGP11139 and the Italian Human ProteomeNet no. RBRN07BMCT_009 (MIUR).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article is a review summarizing the results and conclusions of available publications that include previously performed studies on human or animal subjects.


  1. Agrimi G, Di Noia MA, Marobbio CMT, Fiermonte G, Lasorsa FM, Palmieri F (2004) Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J 379:183–190PubMedCentralPubMedCrossRefGoogle Scholar
  2. Agrimi G, Russo A, Pierri CL, Palmieri F (2012) The peroxisomal NAD(+) carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J Bioenerg Biomembr 44:333–340PubMedCrossRefGoogle Scholar
  3. Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK (2008) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci 264:187–194PubMedCrossRefGoogle Scholar
  4. Alpoim PN, Sousa LP, Mota AP, Rios DR, Dusse LM (2015) Asymmetric Dimethylarginine (ADMA) in cardiovascular and renal disease. Clin Chim Acta 440:36–39PubMedCrossRefGoogle Scholar
  5. Arai Y, Hayashi M, Nishimura M (2008) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rébeillé F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831PubMedCrossRefGoogle Scholar
  7. Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ (1994) Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221PubMedGoogle Scholar
  8. Bouvier F, Linka N, Isner JC, Mutterer J, Weber APM, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–3105PubMedCentralPubMedCrossRefGoogle Scholar
  9. Camacho J (2003) Cloning and characterization of human ORNT2: a second mitochondrial ornithine transporter that can rescue a defective ORNT1 in patients with the hyperornithinemia–hyperammonemia–homocitrullinuria syndrome, a urea cycle disorder. Mol Genet Metab 79:257–271PubMedCrossRefGoogle Scholar
  10. Camacho J, Rioseco-Camacho N (2009) The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res 66:35–41PubMedCrossRefGoogle Scholar
  11. Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA et al (1999) Hyperornithinaemia- syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158PubMedCrossRefGoogle Scholar
  12. Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, Schneider A, Flügge UI, Schumacher K, Frommer WB (2003) Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biol 3:1PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chappell JB, McGivan JD, Crompton M (1972) The molecular basis of biological transport. In: Woessner JFJ, Huijing F (eds) The molecular basis of biological transport. Academic Press, London, pp 55–81CrossRefGoogle Scholar
  14. Crabeel M, Soetens O, De Rijcke M, Pratiwi R, Pankiewicz R (1996) The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J Biol Chem 271:25011–25018PubMedCrossRefGoogle Scholar
  15. Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, Palmieri F (2014) The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 289:33137–33148PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ersoy Tunalı N, Marobbio CMT, Tiryakioğlu NO, Punzi G, Saygılı SK, Onal H, Palmieri F (2014) A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 112:25–29PubMedCentralPubMedCrossRefGoogle Scholar
  17. Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE (2002) Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 277:19289–19294PubMedCrossRefGoogle Scholar
  19. Fiermonte G, Dolce V, David L, Santorelli FM, Dionisi-Vici C, Palmieri F, Walker JE (2003) The mitochondrial ornithine transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 278:32778–32783PubMedCrossRefGoogle Scholar
  20. Fukao Y, Hayashi Y, Mano S, Hayashi M, Nishimura M (2001) Developmental analysis of a putative ATP/ADP carrier protein localized on glyoxysomal membranes during the peroxisome transition in pumpkin cotyledons. Plant Cell Physiol 42:835–841PubMedCrossRefGoogle Scholar
  21. Galea E, Regunathan S, Eliopoulos V, Feinstein DL (1996) Reis DJ (1996) Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 316:247–249PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195PubMedCrossRefGoogle Scholar
  23. Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED (2005) Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 396:424–444PubMedCrossRefGoogle Scholar
  24. Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560PubMedCrossRefGoogle Scholar
  25. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916PubMedCrossRefGoogle Scholar
  26. Herzfeld A, Mezl VA, Knox WE (1977) Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues. Biochem J 166:95–103PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035PubMedCrossRefGoogle Scholar
  28. Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30PubMedCrossRefGoogle Scholar
  29. Indiveri C, Krämer R, Palmieri F (1987) Reconstitution of the malate/aspartate shuttle from mitochondria. J Biol Chem 262:15979–15983PubMedGoogle Scholar
  30. Indiveri C, Tonazzi A, Palmieri F (1992) Identification and purification of the ornithine/citrulline carrier from rat liver mitochondria. Eur J Biochem 207:449–454PubMedCrossRefGoogle Scholar
  31. Indiveri C, Palmieri L, Palmieri F (1994) Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria. Biochim Biophys Acta 1188:293–301PubMedCrossRefGoogle Scholar
  32. Indiveri C, Tonazzi A, Stipani I, Palmieri F (1997) The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H + translocation. Biochem J 327:349–355PubMedCentralPubMedCrossRefGoogle Scholar
  33. Indiveri C, Tonazzi A, Stipani I, Palmieri F (1999) The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: orhithine +/H + exchange. Biochem J 711:705–711Google Scholar
  34. Indiveri C, Tonazzi A, De Palma A, Palmieri F (2001) Kinetic mechanism of antiports catalyzed by reconstituted ornithine/citrulline carrier from rat liver mitochondria. Biochim Biophys Acta 1503:303–313PubMedCrossRefGoogle Scholar
  35. Kirchberger S, Tjaden J, Neuhaus HE (2008) Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Plant J 56:51–63PubMedCrossRefGoogle Scholar
  36. Kleber ME, Seppälä I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, Raitoharju E, Lyytikäinen LP, Mäkelä KM, Laaksonen R et al (2013) Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet 6:505–513PubMedCrossRefGoogle Scholar
  37. Kleinert H, Schwarz PM, Förstermann U (2003) Regulation of the expression of inducible nitric oxide synthase. Biol Chem 384:1343–1364PubMedCrossRefGoogle Scholar
  38. Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017CrossRefGoogle Scholar
  39. Leroch M, Neuhaus HE, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, Tjaden J (2008) Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:438–451PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lim HK, Lim HK, Ryoo S, Benjo A, Shuleri K, Miriel V, Baraban E, Camara A, Soucy K, Nyhan D, Shoukas A, Berkowitz DE (2007) Mitochondrial arginase II constrains endothelial NOS-3 activity. Am J Physiol Heart Circ Physiol 293:H3317–H3324PubMedCrossRefGoogle Scholar
  41. Linka M, Weber AP (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10:461–465PubMedCrossRefGoogle Scholar
  42. Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257PubMedCentralPubMedCrossRefGoogle Scholar
  43. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E (2015) Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 6:20PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ludwig RA (1993) Arabidopsis chloroplasts dissimilate l-arginine and L-citrulline for use as N source. Plant Physiol 101:429–434PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252PubMedCrossRefGoogle Scholar
  46. Marobbio CMT, Agrimi G, Lasorsa FM, Palmieri F (2003) Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine. EMBO J 22:5975–5982PubMedCentralPubMedCrossRefGoogle Scholar
  47. Marobbio CMT, Punzi G, Pierri CL, Palmieri L, Calvello R, Panaro MA, Palmieri F (2015) Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 115:27–32PubMedCrossRefGoogle Scholar
  48. Martinelli D, Diodato D, Ponzi E, Monné M, Boenzi S, Bertini E, Fiermonte G, Dionisi-Vici C (2015) The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis 10:29PubMedCentralPubMedCrossRefGoogle Scholar
  49. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E et al (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975PubMedCrossRefGoogle Scholar
  50. McGuire DM, Gross MD, Elde RP, van Pilsum JF (1986) Localization of l-arginine-glycine amidinotransferase protein in rat tissues by immunofluorescence microscopy. J Histochem Cytochem 34:429–435PubMedCrossRefGoogle Scholar
  51. Mestichelli LJ, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254:640–647PubMedGoogle Scholar
  52. Miyamoto T, Kanazawa N, Kato S, Kawakami M, Inoue Y, Kuhara T, Inoue T, Takeshita K, Tsujino S (2001) Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Human Genet 46:260–262CrossRefGoogle Scholar
  53. Miyamoto T, Kanazawa N, Hayakawa C, Tsujino S (2002) A novel mutation, P126R, in a Japanese patient with HHH syndrome. Pediatr Neurrol 26:65–67CrossRefGoogle Scholar
  54. Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine. Biochemistry 37:10453–10460PubMedCrossRefGoogle Scholar
  55. Monné M, Palmieri F (2014) Antiporters of the mitochondrial carrier family. Curr Top Membr 73:289–320PubMedCrossRefGoogle Scholar
  56. Monné M, Miniero DV, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F (2012) Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 287:7925–7934PubMedCentralPubMedCrossRefGoogle Scholar
  57. Monné M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G (2013a) The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 45:1–13PubMedCrossRefGoogle Scholar
  58. Monné M, Palmieri F, Kunji ERS (2013b) The substrate specificity of mitochondrial carriers: mutagenesis revisited. Mol Membr Biol 30:149–159PubMedCrossRefGoogle Scholar
  59. Morris ML, Lee SC, Harper AE (1972) Influence of differential induction of histidine catabolic enzymes on histidine degradation in vivo. J Biol Chem 247:5793–5804PubMedGoogle Scholar
  60. Morrissey J, McCracken R, Ishidoya S, Klahr S (1995) Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int 47:1458–1461PubMedCrossRefGoogle Scholar
  61. Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin G, Brandolin G, Pebay-Peyroula E (2005) Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579:6031–6036PubMedCrossRefGoogle Scholar
  62. Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346:48–54PubMedCrossRefGoogle Scholar
  63. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflügers Arch 447:689–709PubMedCrossRefGoogle Scholar
  64. Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578PubMedCrossRefGoogle Scholar
  65. Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484PubMedCrossRefGoogle Scholar
  66. Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575PubMedCrossRefGoogle Scholar
  67. Palmieri F, Pierri CL (2010a) Mitochondrial metabolite transport. Essays Biochem 47:37–52PubMedCrossRefGoogle Scholar
  68. Palmieri F, Pierri CL (2010b) Structure and function of mitochondrial carriers - role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 584:1931–1939PubMedCrossRefGoogle Scholar
  69. Palmieri L, De Marco V, Iacobazzi V, Palmieri F, Runswick MJ, Walker JE (1997) Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett 410:447–451PubMedCrossRefGoogle Scholar
  70. Palmieri L, Lasorsa FM, Vozza A, Agrimi G, Fiermonte G, Runswick MJ, Walker JE, Palmieri F (2000) Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta 1459:363–369PubMedCrossRefGoogle Scholar
  71. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrústegui et al (2001a) Citrin and aralar1 are Ca(2 +)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069PubMedCentralPubMedCrossRefGoogle Scholar
  72. Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001b) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059PubMedCentralPubMedCrossRefGoogle Scholar
  73. Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P et al (2006a) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757:1249–1262PubMedCrossRefGoogle Scholar
  74. Palmieri L, Todd CD, Arrigoni R, Hoyos ME, Santoro A, Polacco JC, Palmieri F (2006b) Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. Biochim Biophys Acta 1757:1277–1283PubMedCrossRefGoogle Scholar
  75. Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G et al (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD + carrier proteins. J Biol Chem 284:31249–31259PubMedCentralPubMedCrossRefGoogle Scholar
  76. Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181PubMedCrossRefGoogle Scholar
  77. Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344:555–563PubMedCentralPubMedCrossRefGoogle Scholar
  78. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44PubMedCrossRefGoogle Scholar
  79. Planchais S, Cabassa C, Toka I, Justin AM, Renou JP, Savouré A, Carol P (2014) BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. Front Plant Sci 5:330PubMedCentralPubMedCrossRefGoogle Scholar
  80. Porcelli V, Fiermonte G, Longo A, Palmieri F (2014) The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 289:13374–13384PubMedCentralPubMedCrossRefGoogle Scholar
  81. Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202PubMedCrossRefGoogle Scholar
  82. Robinson AJ, Kunji ERS (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA 103:2617–2622PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci USA 111:E426–E434PubMedCentralPubMedCrossRefGoogle Scholar
  84. Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, Lim HK, Sohi J, Santhanam L, Soucy K, Tuday E, Baraban E, Ilies M, Gerstenblith G, Nyhan D, Shoukas A, Christianson DW, Alp NJ, Champion HC, Huso D, Berkowitz DE (2008) Endothelial arginase II A novel target for the treatment of atherosclerosis. Circ Res 102:923–932PubMedCrossRefGoogle Scholar
  85. Salvi S, Dionisi-Vici C, Bertini E, Verardo M, Santorelli FM (2001) Seven novel mutations in the ORNT1 gene (SLC25A15) in patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Hum Mutat 18:460PubMedCrossRefGoogle Scholar
  86. Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144:250–254PubMedCrossRefGoogle Scholar
  87. Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316PubMedCrossRefGoogle Scholar
  88. Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, Ikeda K, Matsuura A (2003) A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem 278:38796–38802PubMedCrossRefGoogle Scholar
  89. Shargool PD, Jain JC, McKay G (1988) Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry 27:1571–1574CrossRefGoogle Scholar
  90. Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774PubMedCrossRefGoogle Scholar
  91. Shih VE, Efron ML, Moser HW (1969) Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am J Dis Child 117:83–92PubMedCrossRefGoogle Scholar
  92. Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058PubMedCentralPubMedCrossRefGoogle Scholar
  93. Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien YH, Loguercio C, de Baulny HO, Nassogne MC, Schiff M et al (2009) Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 30:741–748PubMedCrossRefGoogle Scholar
  94. Thompson JF (1980) Arginine synthesis, proline synthesis, and related processes. In: Miflin BJ (ed) The Biochemistry of Plants, vol 5. Academic Press, New York, pp 375–403Google Scholar
  95. Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, Mishra A, Marty F, Schoefs B, Adamska I et al (2007) Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 282:8848–8859PubMedCrossRefGoogle Scholar
  96. Todisco S, Di Noia MA, Castegna A, Lasorsa FM, Paradies E, Palmieri F (2014) The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5′-phosphosulfate and 3′-phospho-adenosine 5′-phosphosulfate. Biochim Biophys Acta 1837:326–334PubMedCrossRefGoogle Scholar
  97. Toka I, Planchais S, Cabassa C, Justin AM, De Vos D, Richard L, Savouré A, Carol P (2010) Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER 2 enhance proline accumulation in Arabidopsis. Plant Physiol 152:1851–1862PubMedCentralPubMedCrossRefGoogle Scholar
  98. Tomaschitz A, Meinitzer A, Pilz S, Rus-Machan J, Genser B, Drechsler C, Grammer T, Krane V, Ritz E, Kleber ME et al (2014) Homoarginine, kidney function and cardiovascular mortality risk. Nephrol Dial Transplant 29:663–671PubMedCrossRefGoogle Scholar
  99. Tonazzi A, Giangregorio N, Palmieri F, Indiveri C (2005) Relationships of Cysteine and Lysine residues with the substrate binding site of the mitochondrial ornithine/citrulline carrier: an inhibition kinetic approach combined with the analysis of the homology structural model. Biochim Biophys Acta 1718:53–60PubMedCrossRefGoogle Scholar
  100. Tsujino S, Kanazawa N, Ohashi T, Eto Y, Saito T, Kira J, Yamada T (2000) Three novel mutations (G27E, insAAC, R179X) in the ORNT1 gene of Japanese patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Ann Neurol 47:625–631PubMedCrossRefGoogle Scholar
  101. Valle D, Simell O (2001) The hyperornithinemias. In: Beaudet AL, Sly WS, Valle D (eds) Scriver CR. The metabolic and molecular basis of inherited disease, New York, pp 1909–1964Google Scholar
  102. Venekamp JH, Lampe JEM, Koot JTM (1989) Organic acids as sources or drought-induced proline synthesis in field bean plants, Vicia faba L. J Plant Physiol 133:654–659CrossRefGoogle Scholar
  103. Verma DPS, Zhang CS (1999) Regulation of proline and arginine biosynthesis in plants. In: Singh BK (ed) Plant amino acids: Biochemistry and biotechnology. Marcel Dekker, New York, pp 249–265Google Scholar
  104. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D et al (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111:960–965PubMedCentralPubMedCrossRefGoogle Scholar
  105. Wang Y, Golledge J (2013) Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr Neurovasc Res 10:81–89PubMedCrossRefGoogle Scholar
  106. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17PubMedCrossRefGoogle Scholar
  107. Wu G (2013) Amino acids: Biochemistry and Nutrition. CRC Press, Taylor and Francis GroupCrossRefGoogle Scholar
  108. Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Magnus Monné
    • 1
    • 2
  • Daniela Valeria Miniero
    • 1
  • Lucia Daddabbo
    • 1
  • Luigi Palmieri
    • 1
  • Vito Porcelli
    • 1
  • Ferdinando Palmieri
    • 1
    Email author
  1. 1.Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
  2. 2.Department of SciencesUniversity of BasilicataPotenzaItaly

Personalised recommendations