Skip to main content

Synthetic strategies for polypeptides and proteins by chemical ligation

Abstract

This review focuses on chemical ligation methods for the preparation of oligopeptides and proteins. Chemical ligation is a practical and convenient methodology in peptide and protein synthesis. Longer peptides and proteins can be obtained with high yield in aqueous buffer solutions by coupling unprotected peptide segments even without activation by enzymes or further chemical agents. Several methods and protocols were developed in the past. The potential of the most important approaches of the thioester- and imine-ligation techniques is demonstrated by a broad spectrum of applications. In addition, special features and protocols such as the template-directed ligation, ligation with novel additives or solvent media, microwave-assisted ligation, and the achievements obtained with those are also highlighted herein.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

References

  • Agarwal P, van der Weijden J, Sletten EM et al (2013a) A Pictet-Spengler ligation for protein chemical modification. Proc Natl Acad Sci USA 110:46–51

    PubMed Central  PubMed  Google Scholar 

  • Agarwal P, Kudirka R, Albers AE et al (2013b) Hydrazino-pictet-spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24:846–851

    CAS  PubMed  Google Scholar 

  • Assem N, Natarajan A, Yudin AK (2010) Chemoselective peptidomimetic ligation using thioacid peptides and aziridine templates. J Am Chem Soc 132:10986–10987

    CAS  PubMed  Google Scholar 

  • Bacsa B, Kappe CO (2007) Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation. Nat Protoc 2:2222–2227

    CAS  PubMed  Google Scholar 

  • Beekman NJCM, Schaaper WMM, Langeveld JPM et al (2001) The nature of the bond between peptide and carrier molecule determines the immunogenicity of the construct. J Pept Res 58:237–245

    CAS  PubMed  Google Scholar 

  • Bodapati KC, Soudy R, Etayash H et al (2013) Design, synthesis and evaluation of antimicrobial activity of N-terminal modified Leucocin A analogues. Bioorg Med Chem 21:3715–3722

    CAS  PubMed  Google Scholar 

  • Bode JW, Fox RM, Baucom KD (2006) Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and alpha-ketoacids. Angew Chem Int Ed 45:1248–1252

    CAS  Google Scholar 

  • Böhm M, Kühl T, Hardes K et al (2012) Synthesis and functional characterization of tridegin and its analogues: inhibitors and substrates of factor XIIIa. Chem Med Chem 7:326–333

    PubMed  Google Scholar 

  • Böhm M, Tietze AA, Heimer P et al (2013) Ionic liquids as reaction media for oxidative folding and native chemical ligation of cysteine-containing peptides. J Mol Liq 192:67–70

    Google Scholar 

  • Boll E, Dheur J, Drobecq H, Melnyk O (2012) Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu. Org Lett 14:2222–2225

    CAS  PubMed  Google Scholar 

  • Boll E, Ebran J-P, Drobecq H et al (2014) Access to large cyclic peptides by a one-pot two-peptide segment ligation/cyclization process. Org Lett 17:130–133

    PubMed  Google Scholar 

  • Boll E, Drobecq H, Ollivier N et al (2015) One-pot chemical synthesis of small ubiquitin-like modifier protein–peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates. Nat Protoc 10:269–292

    CAS  PubMed  Google Scholar 

  • Botti P, Pallin TD, Tam JP (1996) Cyclic peptides from linear unprotected peptide precursors through thiazolidine formation. J Am Chem Soc 118:10018–10024

    CAS  Google Scholar 

  • Botti P, Carrasco MR, Kent SB (2001) Native chemical ligation using removable Nα-(1-phenyl-2-mercaptoethyl) auxiliaries. Tetrahedron Lett 42:1831–1833

    CAS  Google Scholar 

  • Botti P, Villain M, Manganiello S, Gaertner H (2004) Native chemical ligation through in situ O to S acyl shift. Org Lett 6:4861–4864

    CAS  PubMed  Google Scholar 

  • Brik A, Wong CH (2007) Sugar-assisted ligation for the synthesis of glycopeptides. Chemistry 13:5670–5675

    CAS  PubMed  Google Scholar 

  • Brik A, Ficht S, Yang YY et al (2006) Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J Am Chem Soc 128:15026–15033

    CAS  PubMed  Google Scholar 

  • Bruick RK, Dawson PE, Kent SBH et al (1996) Template-directed ligation of peptides to oligonucleotides. Chem Biol 3:49–56

    CAS  PubMed  Google Scholar 

  • Burns JA, Butler JC, Moran J, Whitesides GM (1991) Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem 56:2648–2650

    CAS  Google Scholar 

  • Campbell RE (2013) Synthesis of thioester peptides for traditional Native Chemical Ligation of the Syk protein and for auxiliary-mediated Native Chemical Ligation. Dissertation AAI1544248, Purdue University

  • Canne LE, Bark SJ, Kent SBH (1996) Extending the applicability of native chemical ligation. J Am Chem Soc 118:5891–5896

    CAS  Google Scholar 

  • Cemazar M, Craik DJ (2008) Microwave-assisted Boc-solid phase peptide synthesis of cyclic cysteine-rich peptides. J Pept Sci 14:683–689

    CAS  PubMed  Google Scholar 

  • Chandrudu S, Simerska P, Toth I (2013) Chemical methods for peptide and protein production. Molecules 18:4373–4388

    CAS  PubMed  Google Scholar 

  • Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247–3256

    CAS  PubMed  Google Scholar 

  • Cowper B, Sze TM, Premdjee B et al (2015) Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated glucagon-like peptide 1 (GLP-1) analogue. Chem Commun 51:3208–3210

    CAS  Google Scholar 

  • Craik DJ (2012) Protein folding: Turbo-charged crosslinking. Nat Chem 4:600–602

    CAS  Google Scholar 

  • Dang B, Kubota T, Mandal K et al (2013) Native chemical ligation at Asx-Cys, Glx-Cys: chemical synthesis and high-resolution X-ray structure of ShK toxin by racemic protein crystallography. J Am Chem Soc 135:11911–11919

    CAS  PubMed  Google Scholar 

  • Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    CAS  PubMed  Google Scholar 

  • Dawson P, Muir T, Clark-Lewis I, Kent S (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    CAS  PubMed  Google Scholar 

  • Dawson PE, Churchill MJ, Ghadiri MR, Kent SBH (1997) Modulation of reactivity in native chemical ligation through the use of thiol additives. J Am Chem Soc 119:4325–4329

    CAS  Google Scholar 

  • Diezmann F, Eberhard H, Seitz O (2010) Native chemical ligation in the synthesis of internally modified oligonucleotide-peptide conjugates. Biopolymers 94:397–404

    CAS  PubMed  Google Scholar 

  • Dirksen A, Hackeng TM, Dawson PE (2006) Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed Engl 45:7581–7584

    CAS  PubMed  Google Scholar 

  • Dittmann M, Sadek M, Seidel R, Engelhard M (2012) Native chemical ligation in dimethylformamide can be performed chemoselectively without racemization. J Pept Sci 18:312–316

    CAS  PubMed  Google Scholar 

  • Durek T, Alewood PF (2011) Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew Chem Int Ed 50:12042–12045

    CAS  Google Scholar 

  • Dyer FB (2013) The aziridine-mediated ligation and efforts towards a general synthesis of N-terminal aziridinyl peptides. Dissertation 3611261, Washington Univeristy

  • Dyer FB, Park CM, Joseph R, Garner P (2011) Aziridine-mediated ligation and site-specific modification of unprotected peptides. J Am Chem Soc 133:20033–20035

    CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Englebretsen DR, Garnham BC, Bergman DA, Alewood PF (1995) A novel thioether linker: chemical synthesis of a HIV-1 protease analogue by thioether ligation. Tetrahedron Lett 36:8871–8874

    CAS  Google Scholar 

  • Epp O, Ladenstein R, Wendel A (1983) The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133:51–69

    CAS  PubMed  Google Scholar 

  • Erben A, Grossmann TN, Seitz O (2011) DNA-instructed acyl transfer reactions for the synthesis of bioactive peptides. Bioorg Med Chem Lett 21:4993–4997

    CAS  PubMed  Google Scholar 

  • Erdélyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis (Stuttg) 11:1592–1596

    Google Scholar 

  • Fang GM, Li YM, Shen F et al (2011) Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed 50:7645–7649

    CAS  Google Scholar 

  • Fang GM, Wang JX, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed 51:10347–10350

    CAS  Google Scholar 

  • Fukuda H, Irie K, Nakahara A et al (1999) Solid-phase synthesis, mass spectrometric analysis of the zinc-folding, and phorbol ester-binding studies of the 116-mer peptide containing the tandem cysteine-rich C1 domains of protein kinase C gamma. Bioorg Med Chem 7:1213–1221

    CAS  PubMed  Google Scholar 

  • Gaertner HF, Rose K, Cotton R et al (1992) Construction of protein analogs by site-specific condensation of unprotected fragments. Bioconjug Chem 3:262–268

    CAS  PubMed  Google Scholar 

  • Galanis AS, Albericio F, Grøtli M (2009) Solid-phase peptide synthesis in water using microwave-assisted heating. Org Lett 11:4488–4491

    CAS  PubMed  Google Scholar 

  • Galonić DP, Ide ND, van der Donk WA, Gin DY (2005) Aziridine-2-carboxylic acid-containing peptides: application to solution- and solid-phase convergent site-selective peptide modification. J Am Chem Soc 127:7359–7369

    PubMed  Google Scholar 

  • Galy N, Mazieres MR, Plaquevent JC (2013) Toward waste-free peptide synthesis using ionic reagents and ionic liquids as solvents. Tetrahedron Lett 54:2703–2705

    CAS  Google Scholar 

  • Gieselman MD, Xie L, van der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3:1331–1334

    CAS  PubMed  Google Scholar 

  • Goldmann AS, Barner L, Kaupp M et al (2012) Orthogonal ligation to spherical polymeric microparticles: modular approaches for surface tailoring. Prog Polym Sci 37:975–984

    CAS  Google Scholar 

  • Greenberg ML, Cammack N (2004) Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 54:333–340

    CAS  PubMed  Google Scholar 

  • Gunasekera S, Aboye TL, Madian WA et al (2013) Making ends meet: microwave-accelerated synthesis of cyclic and disulfide rich proteins via in situ thioesterification and native chemical ligation. Int J Pept Res Ther 19:43–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed Engl 47:6807–6810

    CAS  PubMed  Google Scholar 

  • Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47:10030–10074

    CAS  Google Scholar 

  • Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96:10068–10073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    CAS  PubMed  Google Scholar 

  • Hansen FK, Ha K, Todadze E et al (2011) Microwave-assisted chemical ligation of S-acyl peptides containing non-terminal cysteine residues. Org Biomol Chem 9:7162–7167

    CAS  PubMed  Google Scholar 

  • Heinrikson RL (1971) The selective S-methylation of sulfhydryl groups in proteins and peptides with methyl-p-nitrobenzenesulfonate. J Biol Chem 246:4090–4096

    CAS  PubMed  Google Scholar 

  • Hojo H, Aimoto S (1991) Polypeptide synthesis using the S-alkyl thioester of a partially protected peptide segment. Synthesis of the DNA-binding domain of c-Myb protein (142-193)-NH2. Bull Chem Soc Jpn 64:111–117

    CAS  Google Scholar 

  • Hojo H, Onuma Y, Akimoto Y et al (2007) N-Alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett 48:25–28

    CAS  Google Scholar 

  • Hondal RJ (2009) Using chemical approaches to study selenoproteins-focus on thioredoxin reductases. Biochim Biophys Acta 1790:1501–1512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hossany BR, Johnston BD, Wen X et al (2009) Design, synthesis, and immunochemical characterization of a chimeric glycopeptide corresponding to the Shigella flexneri Y O-polysaccharide and its peptide mimic MDWNMHAA. Carbohydr Res 344:1412–1427

    CAS  PubMed  Google Scholar 

  • Hou W, Zhang X, Li F, Liu CF (2011) Peptidyl N, N-bis(2-mercaptoethyl)-amides as thioester precursors for native chemical ligation. Org Lett 13:386–389

    CAS  PubMed  Google Scholar 

  • Izumi M, Otsuki A, Nishihara M et al (2014) Chemical synthesis of a synthetic analogue of the sialic acid-binding lectin siglec-7. ChemBioChem 15:2503–2507

    CAS  PubMed  Google Scholar 

  • Jebrail MJ, Assem N, Mudrik JM et al (2012) Combinatorial synthesis of peptidomimetics using digital microfluidics. J Flow Chem 2:103–107

    CAS  Google Scholar 

  • Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646

    CAS  PubMed  Google Scholar 

  • Johnson ECB, Kent SBH (2007) Towards the total chemical synthesis of integral membrane proteins: a general method for the synthesis of hydrophobic peptide-thioester building blocks. Tetrahedron Lett 48:1795–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ju L, Lippert AR, Bode JW (2008) Stereoretentive synthesis and chemoselective amide-forming ligations of C-terminal peptide alpha-ketoacids. J Am Chem Soc 130:4253–4255

    CAS  PubMed  Google Scholar 

  • Kawakami T, Aimoto S (2003) A photoremovable ligation auxiliary for use in polypeptide synthesis. Tetrahedron Lett 44:6059–6061

    CAS  Google Scholar 

  • Kern A, Seitz O (2015) Template-directed ligation on repetitive DNA sequences: a chemical method to probe the length of huntington DNA. Chem Sci 6:724–728

    CAS  Google Scholar 

  • Kimmerlin T, Seebach D (2005) “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. J Pept Res 65:229–260

    CAS  PubMed  Google Scholar 

  • Kühl T, Chen M, Teichmann K et al (2014) Ionic liquid 1-ethyl-3-methylimidazolium acetate: an attractive solvent for native chemical ligation of peptides. Tetrahedron Lett 55:3658–3662

    Google Scholar 

  • Lescure A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274:38147–38154

    CAS  PubMed  Google Scholar 

  • Lewandowski B, De Bo G, Ward JW et al (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339:189–193

    CAS  PubMed  Google Scholar 

  • Li X, Zhang L, Hall SE, Tam JP (2000) A new ligation method for N-terminal tryptophan-containing peptides using the Pictet-Spengler reaction. Tetrahedron Lett 41:4069–4073

    CAS  Google Scholar 

  • Li J, Cui HK, Liu L (2010) Peptide ligation assisted by an auxiliary attached to amidyl nitrogen. Tetrahedron Lett 51:1793–1796

    CAS  Google Scholar 

  • Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis: a review. Tetrahedron 57:9225–9283

    Google Scholar 

  • Liu CF, Tam JP (1994a) Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci 91:6584–6588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu CF, Tam JP (1994b) Chemical ligation approach to form a peptide bond between unprotected peptide segments: concept and model study. J Am Chem Soc 116:4149–4153

    CAS  Google Scholar 

  • Liu CF, Rao C, Tam JP (1996a) Acyl disulfide-mediated intramolecular acylation for orthogonal coupling between unprotected peptide segments: mechanism and application. Tetrahedron Lett 37:933–936

    CAS  Google Scholar 

  • Liu CF, Rao C, Tam JP (1996b) Orthogonal ligation of unprotected peptide segments through pseudoproline formation for the synthesis of HIV-1 protease analogs. J Am Chem Soc 118:307–312

    CAS  Google Scholar 

  • Liu Y, Sha R, Wang R et al (2008) 2′,2′-Ligation demonstrates the thermal dependence of DNA-directed positional control. Tetrahedron 64:8417–8422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Low SC, Harney JW, Berry MJ (1995) Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem 270:21659–21664

    CAS  PubMed  Google Scholar 

  • Low DW, Hill MG, Carrasco MR et al (2001) Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary. Proc Natl Acad Sci USA 98:6554–6559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maki T, Kawamura A, Kato N, Ohkanda J (2013) Chemical ligation of epoxide-containing fusicoccins and peptide fragments guided by 14-3-3 protein. Mol Bio Syst 9:940–943

    CAS  Google Scholar 

  • Malins LR, Payne RJ (2012) Synthesis and utility of β-selenol-phenylalanine for native chemical ligation-deselenization chemistry. Org Lett 14:3142–3145

    CAS  PubMed  Google Scholar 

  • Malins LR, Payne RJ (2014) Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins. Curr Opin Chem Biol 22C:70–78

    Google Scholar 

  • Malins LR, Mitchell NJ, Payne RJ (2014) Peptide ligation chemistry at selenol amino acids. J Pept Sci 20:64–77

    CAS  PubMed  Google Scholar 

  • Marinzi C, Offer J, Longhi R, Dawson PE (2004) An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Bioorg Med Chem 12:2749–2757

    CAS  PubMed  Google Scholar 

  • Medini K, Harris PWR, Hards K et al (2015) Chemical synthesis of a pore-forming antimicrobial protein, caenopore-5, by using native chemical ligation at a Glu-Cys site. Chem Bio Chem 16:328–336

    CAS  PubMed  Google Scholar 

  • Melnyk O, Agouridas V (2014) From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N, S-acyl or N, Se-acyl migration reactions. Curr Opin Chem Biol 22:137–145

    CAS  PubMed  Google Scholar 

  • Metanis N, Hilvert D (2012) Strategic use of non-native diselenide bridges to steer oxidative protein folding. Angew Chem Int Ed Engl 51:5585–5588

    CAS  PubMed  Google Scholar 

  • Metanis N, Keinan E, Dawson PE (2010) Traceless ligation of cysteine peptides using selective deselenization. Angew Chem Int Ed 49:7049–7053

    CAS  Google Scholar 

  • Monsó M, Kowalczyk W, Andreu D, de la Torre BG (2012) Reverse thioether ligation route to multimeric peptide antigens. Org Biomol Chem 10:3116–3121

    PubMed  Google Scholar 

  • Moroder L (2005) Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J Pept Sci 11:187–214

    CAS  PubMed  Google Scholar 

  • Moyal T, Hemantha HP, Siman P et al (2013) Highly efficient one-pot ligation and desulfurization. Chem Sci 4:2496

    CAS  Google Scholar 

  • Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346:1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naider FR, Becker JM (1997) Synthesis of prenylated peptides and peptide esters. Pept Sci 43:3–14

    CAS  Google Scholar 

  • Nakamura T, Shigenaga A, Sato K et al (2014) Examination of native chemical ligation using peptidyl prolyl thioester. Chem Commun 50:58–60

    CAS  Google Scholar 

  • Offer J (2010) Native chemical ligation with Nalpha acyl transfer auxiliaries. Biopolymers 94:530–541

    CAS  PubMed  Google Scholar 

  • Offer J, Dawson PE (2000) Nalpha-2-mercaptobenzylamine-assisted chemical ligation. Org Lett 2:23–26

    CAS  PubMed  Google Scholar 

  • Offer J, Boddy CNC, Dawson PE (2002) Extending synthetic access to proteins with a removable acyl transfer auxiliary. J Am Chem Soc 124:4642–4646

    CAS  PubMed  Google Scholar 

  • Offord RE (1969) Protection of peptides of biological origin for use as intermediates in the chemical synthesis of proteins. Nature 221:37–40

    CAS  PubMed  Google Scholar 

  • Ogunkoya AO, Pattabiraman VR, Bode JW (2012) Sequential ??-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. Angew Chem Int Ed 51:9693–9697

    CAS  Google Scholar 

  • Ollivier N, Dheur J, Mhidia R et al (2010) Bis(2-sulfanylethyl)amino native peptide ligation. Org Lett 12:5238–5241

    CAS  PubMed  Google Scholar 

  • Ollivier N, Vicogne J, Vallin A et al (2012) A one-pot three-segment ligation strategy for protein chemical synthesis. Angew Chem Int Ed 51:209–213

    CAS  Google Scholar 

  • Ollivier N, Blanpain A, Boll E et al (2014) Selenopeptide transamidation and metathesis. Org Lett 16:4032–4035

    CAS  PubMed  Google Scholar 

  • Olschewski D, Becker CFW (2008) Chemical synthesis and semisynthesis of membrane proteins. Mol BioSyst 4:733–740

    CAS  PubMed  Google Scholar 

  • Palasek SA, Cox ZJ, Collins JM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    CAS  PubMed  Google Scholar 

  • Pattabiraman VR, Ogunkoya AO, Bode JW (2012) Chemical protein synthesis by chemoselective alpha-ketoacid-hydroxylamine (KAHA) ligations with 5-oxaproline. Angew Chemie Int Ed 51:5114–5118

    CAS  Google Scholar 

  • Payne RJ, Ficht S, Tang S et al (2007) Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J Am Chem Soc 129:13527–13536

    CAS  PubMed  Google Scholar 

  • Quaderer R, Sewing A, Hilvert D (2001) Selenocysteine-mediated native chemical ligation. Helv Chim Acta 84:1197–1206

    CAS  Google Scholar 

  • Raibaut L, Ollivier N, Melnyk O (2012) Sequential native peptide ligation strategies for total chemical protein synthesis. Chem Soc Rev 41:7001–7015

    CAS  PubMed  Google Scholar 

  • Raibaut L, Vicogne J, Leclercq B et al (2013) Total synthesis of biotinylated N domain of human hepatocyte growth factor. Bioorg Med Chem 21:3486–3494

    CAS  PubMed  Google Scholar 

  • Rasale DB, Maity I, Das AK (2014) In situ generation of redox active peptides driven by selenoester mediated native chemical ligation. Chem Commun 50:11397–11400

    CAS  Google Scholar 

  • Rashidian M, Mahmoodi MM, Shah R et al (2013) A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. Bioconjug Chem 24:333–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratnaparkhi MP, Chaudhari SP, Pandya VA (2011) Peptides and proteins in pharmaceuticals. Int J Curr Pharm Res 3:1–9

    CAS  Google Scholar 

  • Reif A, Siebenhaar S, Tröster A et al (2014) Semisynthesis of biologically active glycoforms of the human cytokine interleukin 6. Angew Chem Int Ed 53:12125–12131

    CAS  Google Scholar 

  • Robey FA, Fields RL (1989) Automated synthesis of N-bromoacetyl-modified peptides for the preparation of synthetic peptide polymers, peptide-protein conjugates, and cyclic peptides. Anal Biochem 177:373–377

    CAS  PubMed  Google Scholar 

  • Rohde H, Schmalisch J, Harpaz Z et al (2011) Ascorbate as an alternative to thiol additives in native chemical ligation. ChemBioChem 12:1396–1400

    CAS  PubMed  Google Scholar 

  • Roloff A, Seitz O (2013a) The role of reactivity in DNA templated native chemical PNA ligation during PCR. Bioorg Med Chem 21:3458–3464

    CAS  PubMed  Google Scholar 

  • Roloff A, Seitz O (2013b) Bioorthogonal reactions challenged: DNA templated native chemical ligation during PCR. Chem Sci 4:432

    CAS  Google Scholar 

  • Rose K (1994) Facile synthesis of homogeneous artificial proteins. J Am Chem Soc 116:30–33

    CAS  Google Scholar 

  • Ruff Y, Garavini V, Giuseppone N (2014) Reversible native chemical ligation: a facile access to dynamic covalent peptides. J Am Chem Soc 136:6333–6339

    CAS  PubMed  Google Scholar 

  • Santhakumar G, Payne RJ (2014) Total synthesis of polydiscamides B, C, and D via a convergent native chemical ligation–oxidation strategy. Org Lett 16:4500–4503

    CAS  PubMed  Google Scholar 

  • Sato K, Shigenaga A, Tsuji K et al (2011) N-sulfanylethylanilide peptide as a crypto-thioester peptide. Chem Bio Chem 12:1840–1844

    CAS  PubMed  Google Scholar 

  • Schnolzer M, Kent S (1992) Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science 256:221–225

    CAS  PubMed  Google Scholar 

  • Selvasekaran J, Turnbull KD (1999) Chemical ligation of oligodeoxyribonucleotides on circular DNA templates. Nucleic Acids Res 27:624–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shao J, Tam JP (1995) Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages. J Am Chem Soc 117:3893–3899

    CAS  Google Scholar 

  • Shao Y, Lu W, Kent SBH (1998) A novel method to synthesize cyclic peptides. Tetrahedron Lett 39:3911–3914

    CAS  Google Scholar 

  • Siman P, Karthikeyan SV, Brik A (2012) Native chemical ligation at glutamine. Org Lett 14:1520–1523

    CAS  PubMed  Google Scholar 

  • Sohma Y, Kent SBH (2009) Biomimetic synthesis of lispro insulin via a chemically synthesized “mini-proinsulin” prepared by oxime-forming ligation. J Am Chem Soc 131:16313–16318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sohma Y, Kitamura H, Kawashima H et al (2011) Synthesis of an O-acyl isopeptide by using native chemical ligation to efficiently construct a hydrophobic polypeptide. Tetrahedron Lett 52:7146–7148

    CAS  Google Scholar 

  • Stanchev S, Zawada Z, Monincová L et al (2014) Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern. J Pept Sci 20:725–735

    CAS  PubMed  Google Scholar 

  • Steinhagen M, Zunker K, Nordsieck K, Beck-Sickinger AG (2013) Large scale modification of biomolecules using immobilized sortase A from Staphylococcus aureus. Bioorg Med Chem 21:3504–3510

    CAS  PubMed  Google Scholar 

  • Tam JP, Miao Z (1999) Stereospecific pseudoproline ligation of n-terminal serine, threonine, or cysteine-containing unprotected peptides. J Am Chem Soc 121:9013–9022

    CAS  Google Scholar 

  • Tam JP, Yu Q (1998) Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones. Biopolymers 46:319–327

    CAS  PubMed  Google Scholar 

  • Tam JP, Lu YA, Liu CF, Shao J (1995) Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci 92:12485–12489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tam JP, Yu Q, Miao Z (1999) Orthogonal ligation strategies for peptide and protein. Biopolymers 51:311–332

    CAS  PubMed  Google Scholar 

  • Tam JP, Xu J, Eom KD (2001) Methods and strategies of peptide ligation. Biopolymers 60:194–205

    CAS  PubMed  Google Scholar 

  • Tan AR, Swain SM (2003) Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol 30(5 Suppl 16):54–64

    CAS  PubMed  Google Scholar 

  • Tanaka S, Moriwaki S, Uenishi K et al (2011) The availability of urinary gamma-glutamyltransferase as a screening for osteoporosis. Bone 48:S210

    Google Scholar 

  • Tanaka T, Wagner AM, Warner JB et al (2013) Expressed protein ligation at methionine: N-terminal attachment of homocysteine, ligation, and masking. Angew Chem Int Ed Engl 52:6210–6213

    CAS  PubMed  Google Scholar 

  • Thapa P, Zhang RY, Menon V, Bingham JP (2014) Native chemical ligation: a boon to peptide chemistry. Molecules 19:14461–14483

    PubMed  Google Scholar 

  • Thompson RE, Liu X, Alonso-García N et al (2014) Trifluoroethanethiol: an additive for efficient one-pot peptide ligation: desulfurization chemistry. J Am Chem Soc 136:8161–8164

    CAS  PubMed  Google Scholar 

  • Tolbert TJ, Franke D, Wong C-H (2005) A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E. coli as TEV protease cleavable fusion protein. Bioorg Med Chem 13:909–915

    CAS  PubMed  Google Scholar 

  • Tong X, Xiao XH, Deng JC et al (2010) Applications of low temperature microwave technique in chemistry research. Prog Chem 22:2462–2468

    CAS  Google Scholar 

  • Tuchscherer G (1993) Template assembled synthetic proteins: condensation of a multifunctional peptide to a topological template via chemoselective ligation. Tetrahedron Lett 34:8419–8422

    CAS  Google Scholar 

  • Van de Langemheen H, Quarles van Ufford HLC, Kruijtzer JAW, Liskamp RMJ (2014a) Efficient synthesis of protein mimics by sequential native chemical ligation. Org Lett 16:2138–2141

    PubMed  Google Scholar 

  • Van de Langemheen H, van Hoeke M, Quarles van Ufford HC et al (2014b) Scaffolded multiple cyclic peptide libraries for protein mimics by native chemical ligation. Org Biomol Chem 12:4471–4478

    PubMed  Google Scholar 

  • Van de Vijver P, Scheer L, van Beijnum J et al (2012) Application of an omonasteine ligation strategy for the total chemical synthesis of the BRD7 bromodomain. Chem Commun (Camb) 48:9403–9405

    Google Scholar 

  • Vázquez O, Seitz O (2014) Templated native chemical ligation: peptide chemistry beyond protein synthesis. J Pept Sci 20:78–86

    PubMed  Google Scholar 

  • Villain M, Gaertner H, Botti P (2003) Native chemical ligation with aspartic and glutamic acids as C-terminal residues: scope and limitations. Eur J Org Chem 2003(17):3267–3272

    Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    CAS  PubMed  Google Scholar 

  • Wagner M, Sonntag D, Grimm R et al (1999) Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum: biochemical and molecular analysis. Eur J Biochem 260:38–49

    CAS  PubMed  Google Scholar 

  • Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed Engl 46:9248–9252

    CAS  PubMed  Google Scholar 

  • Wang JX, Fang GM, He Y et al (2015) Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis. Angew Chem Int Ed Engl 54:2194–2198

    CAS  PubMed  Google Scholar 

  • Warren JD, Miller JS, Keding SJ, Danishefsky SJ (2004) Toward fully synthetic glycoproteins by ultimately convergent routes: a solution to a long-standing problem. J Am Chem Soc 126:6576–6578

    CAS  PubMed  Google Scholar 

  • Wermeling DP (2005) Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 25:1084–1094

    CAS  PubMed  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006

    CAS  PubMed  Google Scholar 

  • White P, Keyte JW, Bailey K, Bloomberg G (2004) Expediting the Fmoc solid phase synthesis of long peptides through the application of dimethyloxazolidine dipeptides. J Pept Sci 10:18–26

    CAS  PubMed  Google Scholar 

  • Wieland T, Bokelmann E, Bauer L et al (1953) Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Ann Chem 583:129–149

    CAS  Google Scholar 

  • Wilce JA, Love SG, Richardson SJ et al (2001) Synthesis of an analog of the thyroid hormone-binding protein transthyretin via regioselective chemical ligation. J Biol Chem 276:25997–26003

    CAS  PubMed  Google Scholar 

  • Wu J, Ruiz-Rodríguez J, Comstock JM et al (2011) Synthesis of human GLP-1 (7–36) by chemoselective α-ketoacid–hydroxylamine peptide ligation of unprotected fragments. Chem Sci 2:1976

    CAS  Google Scholar 

  • Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    CAS  PubMed  Google Scholar 

  • Yang YY, Ficht S, Brik A, Wong CH (2007) Sugar-assisted ligation in glycoprotein synthesis. J Am Chem Soc 129:7690–7701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang R, Hou W, Zhang X, Liu CF (2012) N-to-C sequential ligation using peptidyl N, N -bis(2-mercaptoethyl)amide building blocks. Org Lett 14:374–377

    CAS  PubMed  Google Scholar 

  • Yang R, Bi X, Li F et al (2014) Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chem Commun 50:7971–7974

    CAS  Google Scholar 

  • Yu HM, Chen ST, Wang KT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57:4781–4784

    CAS  Google Scholar 

  • Zhang L, Tam JP (1997) Orthogonal coupling of unprotected peptide segments through histidyl amino terminus. Tetrahedron Lett 38:3–6

    CAS  Google Scholar 

  • Zhang L, Torgerson TR, Liu XY et al (1998) Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proc Natl Acad Sci USA 95:9184–9189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Li Y, Zhang M, Li X (2012) DNA-directed formation of peptide bond: a model study toward DNA-programmed peptide ligation. Tetrahedron 68:5152–5156

    CAS  Google Scholar 

  • Zheng JS, Chang HN, Wang FL, Liu L (2011) Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. J Am Chem Soc 133:11080–11083

    CAS  PubMed  Google Scholar 

  • Zheng JS, Tang S, Qi YK et al (2013) Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protoc 8:2483–2495

    CAS  PubMed  Google Scholar 

  • Zhong W, Skwarczynski M, Fujita Y et al (2009) Design and synthesis of lipopeptide–carbohydrate assembled multivalent vaccine candidates using native chemical ligation. Aust J Chem 62:993

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the DAAD and the Chinese Scholarship Council for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Imhof.

Additional information

Handling Editor: F. Albericio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Heimer, P. & Imhof, D. Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 47, 1283–1299 (2015). https://doi.org/10.1007/s00726-015-1982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1982-5

Keywords

  • Chemical ligation
  • Native chemical ligation
  • Thioester
  • Chemoselective synthesis
  • Protein synthesis