Advertisement

Amino Acids

, Volume 47, Issue 7, pp 1455–1464 | Cite as

Regulation of β2-adrenergic receptor cell surface expression by interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL)

  • Longyan Yang
  • Junfang Zheng
  • Ying Xiong
  • Ran Meng
  • Qian Ma
  • Hua Liu
  • Hui Shen
  • Shuai Zheng
  • Songlin Wang
  • Junqi HeEmail author
Original Article

Abstract

The beta-2 adrenergic receptor (β2AR), a member of GPCR, can activate multiple signaling pathways and is an important treatment target for cardiac failure. However, the molecular mechanism about β2AR signaling regulation is not fully understood. In this study, we found that cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) overexpression reduced β2AR-mediated extracellular signal-regulated kinase-1/2 (ERK1/2) activation. Further study identified CAL as a novel binding partner of β2AR. CAL is associated with β2AR mainly via the third intracellular loop (ICL3) of receptor and the coiled-coil domains of CAL, which is distinct from CAL/β1AR interaction mediated by the carboxyl terminal (CT) of β1AR and PDZ domain of CAL. CAL overexpression retarded β2AR expression in Golgi apparatus and reduced the receptor expression in plasma membrane.

Keywords

Adrenergic receptor PDZ homology Coiled-coil domain CAL Intracellular loop 

Abbreviations

βARs

Beta-adrenergic receptors

CAL

Cystic fibrosis transmembrane conductance regulator-associated ligand

CT

Carboxyl terminal

ERK

Extracellular signal-regulated kinase

GST

Glutathione S-transferase

ICL

Intracellular loop

PDZ

PSD-95/discs-large/ZO-1 homology

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of the People’s Republic of China (No. 81272887 and 81372739), Beijing Municipal Natural Science Foundation (No. 7131003), the Foundation of Beijing Educational Committee (No. KM201110025002), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201304187). The manuscript revision by Dr. Qiong Qin was highly appreciated.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Supplementary material

726_2015_1965_MOESM1_ESM.xls (20 kb)
Supplementary material 1 (XLS 19 kb)
726_2015_1965_MOESM2_ESM.doc (29 kb)
Supplementary material 2 (DOC 29 kb)

References

  1. Amacher JF, Cushing PR, Bahl CD, Beck T, Madden DR (2013) Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop. J Biol Chem 288(7):5114–5126PubMedCentralPubMedCrossRefGoogle Scholar
  2. Borroto-Escuela DO, Tarakanov AO, Guidolin D, Ciruela F, Agnati LF, Fuxe K (2011) Moonlighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life 63(7):463–472PubMedCrossRefGoogle Scholar
  3. Chan LF, Chung TT, Massoud AF, Metherell LA, Clark AJ (2009) Functional consequence of a novel Y129C mutation in a patient with two contradictory melanocortin-2-receptor mutations. Eur J Endocrinol 160(4):705–710PubMedCentralPubMedCrossRefGoogle Scholar
  4. Charest A, Lane K, McMahon K, Housman DE (2001) Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 276(31):29456–29465PubMedCrossRefGoogle Scholar
  5. Chen AS, Kim YM, Gayen S, Huang Q, Raida M, Kang C (2011) NMR structural study of the intracellular loop 3 of the serotonin 5-HT(1A) receptor and its interaction with calmodulin. Biochim Biophys Acta 1808(9):2224–2232PubMedCrossRefGoogle Scholar
  6. Cheng J, Moyer BD, Milewski M, Loffing J, Ikeda M, Mickle JE, Cutting GR, Li M, Stanton BA, Guggino WB (2002) A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem 277(5):3520–3529PubMedCrossRefGoogle Scholar
  7. Cheng J, Wang H, Guggino WB (2004) Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL. J Biol Chem 279(3):1892–1898PubMedCrossRefGoogle Scholar
  8. Cheng SB, Quinn JA, Graeber CT, Filardo EJ (2011) Down-modulation of the G-protein-coupled estrogen receptor, GPER, from the cell surface occurs via a trans-Golgi-proteasome pathway. J Biol Chem 286(25):22441–22455PubMedCentralPubMedCrossRefGoogle Scholar
  9. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655):88–91PubMedCrossRefGoogle Scholar
  10. Dong C, Nichols CD, Guo J, Huang W, Lambert NA, Wu G (2012) A triple arg motif mediates alpha(2B)-adrenergic receptor interaction with Sec24C/D and export. Traffic 13(6):857–868PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dorn GW 2nd, Liggett SB (2008) Pharmacogenomics of beta-adrenergic receptors and their accessory signaling proteins in heart failure. Clin Transl Sci 1(3):255–262PubMedCrossRefGoogle Scholar
  12. Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10PubMedCrossRefGoogle Scholar
  13. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ et al (1998) The beta(2)-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+exchange. Nature 392(6676):626–630PubMedCrossRefGoogle Scholar
  14. He J, Bellini M, Xu J, Castleberry AM, Hall RA (2004) Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits beta1-adrenergic receptor surface expression. J Biol Chem 279(48):50190–50196PubMedCrossRefGoogle Scholar
  15. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600PubMedCrossRefGoogle Scholar
  16. Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA (2000) Beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 275(49):38659–38666PubMedCrossRefGoogle Scholar
  17. Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ (2003) GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation. J Biol Chem 278(28):26295–26301PubMedCrossRefGoogle Scholar
  18. Kaya AI, Onaran HO, Ozcan G, Ambrosio C, Costa T, Balli S, Ugur O (2012) Cell contact-dependent functional selectivity of beta2-adrenergic receptor ligands in stimulating cAMP accumulation and extracellular signal-regulated kinase phosphorylation. J Biol Chem 287(9):6362–6374PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kling RC, Lanig H, Clark T, Gmeiner P (2013) Active-state models of ternary GPCR complexes: determinants of selective receptor-G-protein coupling. PLoS One 8(6):e67244PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kobayashi H, Narita Y, Nishida M, Kurose H (2005) Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK. Cell Signal 17(10):1248–1253PubMedCrossRefGoogle Scholar
  21. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M et al (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 277(38):35402–35410PubMedCrossRefGoogle Scholar
  22. Marion S, Oakley RH, Kim KM, Caron MG, Barak LS (2006) A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J Biol Chem 281(5):2932–2938PubMedCrossRefGoogle Scholar
  23. Martyniuk CJ, Prucha MS, Doperalski NJ, Antczak P, Kroll KJ, Falciani F, Barber DS, Denslow ND (2013) Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). PLoS One 8(3):e59093PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mialet-Perez J, Green SA, Miller WE, Liggett SB (2004) A primate-dominant third glycosylation site of the beta2-adrenergic receptor routes receptors to degradation during agonist regulation. J Biol Chem 279(37):38603–38607PubMedCrossRefGoogle Scholar
  25. Nunn C, Zou MX, Sobiesiak AJ, Roy AA, Kirshenbaum LA, Chidiac P (2010) RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 22(8):1231–1239PubMedCrossRefGoogle Scholar
  26. Parker MS, Park EA, Sallee FR, Parker SL (2011) Two intracellular helices of G-protein coupling receptors could generally support oligomerization and coupling with transducers. Amino Acids 40(2):261–268PubMedCrossRefGoogle Scholar
  27. Qian L, Hu X, Zhang D, Snyder A, Wu HM, Li Y, Wilson B, Lu RB, Hong JS, Flood PM (2009) Beta2 Adrenergic receptor activation induces microglial NADPH oxidase activation and dopaminergic neurotoxicity through an ERK-dependent/protein kinase A-independent pathway. Glia 57(15):1600–1609PubMedCentralPubMedCrossRefGoogle Scholar
  28. Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281(2):1261–1273PubMedCrossRefGoogle Scholar
  29. Shiina T, Kawasaki A, Nagao T, Kurose H (2000) Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors. J Biol Chem 275(37):29082–29090PubMedCrossRefGoogle Scholar
  30. Simonsen A, Gaullier JM, D’Arrigo A, Stenmark H (1999) The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274(41):28857–28860PubMedCrossRefGoogle Scholar
  31. Sun C, Zheng J, Cheng S, Feng D, He J (2013) EBP50 phosphorylation by Cdc2/Cyclin B kinase affects actin cytoskeleton reorganization and regulates functions of human breast cancer cell line MDA-MB-231. Mol Cells 36(1):47–54PubMedCentralPubMedCrossRefGoogle Scholar
  32. Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM (2007) Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal 19(2):251–260PubMedCrossRefGoogle Scholar
  33. Tash BR, Bewley MC, Russo M, Keil JM, Griffin KA, Sundstrom JM, Antonetti DA, Tian F, Flanagan JM (2012) The occludin and ZO-1 complex, defined by small angle X-ray scattering and NMR, has implications for modulating tight junction permeability. Proc Natl Acad Sci USA 109(27):10855–10860PubMedCentralPubMedCrossRefGoogle Scholar
  34. Watanabe S, De Zan T, Ishizaki T, Narumiya S (2013) Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J Cell Sci 126(Pt 8):1773–1784PubMedCrossRefGoogle Scholar
  35. Woods AS (2010) The dopamine D(4) receptor, the ultimate disordered protein. J Recept Signal Transduct Res 30(5):331–336PubMedCentralPubMedCrossRefGoogle Scholar
  36. Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA (2001) Beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 276(44):41310–41317PubMedCrossRefGoogle Scholar
  37. Yang X, Zheng J, Xiong Y, Shen H, Sun L, Huang Y, Sun C, Li Y, He J (2010) Beta-2 adrenergic receptor mediated ERK activation is regulated by interaction with MAGI-3. FEBS Lett 584(11):2207–2212PubMedCrossRefGoogle Scholar
  38. Yao R, Maeda T, Takada S, Noda T (2001) Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commun 286(4):771–778PubMedCrossRefGoogle Scholar
  39. Yao W, Feng D, Bian W, Yang L, Li Y, Yang Z, Xiong Y, Zheng J, Zhai R, He J (2012) EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation. Amino Acids 43(5):2027–2035PubMedCentralPubMedCrossRefGoogle Scholar
  40. Zhang J, Cheng S, Xiong Y, Ma Y, Luo D, Jeromin A, Zhang H, He J (2008) A novel association of mGluR1a with the PDZ scaffold protein CAL modulates receptor activity. FEBS Lett 582(30):4117–4124PubMedCrossRefGoogle Scholar
  41. Zheng J, Shen H, Xiong Y, Yang X, He J (2010a) The beta1-adrenergic receptor mediates extracellular signal-regulated kinase activation via Galphas. Amino Acids 38(1):75–84PubMedCrossRefGoogle Scholar
  42. Zheng JF, Sun LC, Liu H, Huang Y, Li Y, He J (2010b) EBP50 exerts tumor suppressor activity by promoting cell apoptosis and retarding extracellular signal-regulated kinase activity. Amino Acids 38(4):1261–1268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Longyan Yang
    • 1
  • Junfang Zheng
    • 1
  • Ying Xiong
    • 1
  • Ran Meng
    • 1
  • Qian Ma
    • 1
  • Hua Liu
    • 1
  • Hui Shen
    • 1
  • Shuai Zheng
    • 1
  • Songlin Wang
    • 1
    • 2
  • Junqi He
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Molecular Laboratory for Gene Therapy and Tooth RegenerationCapital Medical University School of StomatologyBeijingChina

Personalised recommendations