Skip to main content

Advertisement

Log in

Immunization with DISC1 protein in an animal model of ADHD influences behavior and excitatory amino acids in prefrontal cortex and striatum

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The Disrupted-in-schizophrenia 1 (DISC1) gene is involved in vulnerability to neuropsychiatric disorders. Naples high-excitability (NHE) rat model neuropsychiatric problems characterized by an unbalanced mesocortical dopamine system. Here, we assessed behavioral and neurochemical effects of immunization against multimeric rat DISC1 protein in adult NHE rats, an animal model of attention-deficit hyperactivity disorder and their Random-Bred (NRB) controls. Males of both lines received subcutaneous injections of vehicle (PB), adjuvant only (AD) or recombinant rat DISC1 protein purified from E. coli, suspended in AD (anti-DISC1) at age of 30, 45 and 60 postnatal days (pnd). At 75 pnd, the rats were exposed to a Làt maze and 2 days later to an Olton eight-arm radial maze, and horizontal (HA) and vertical activities (VA) were monitored. Non-selective (NSA) and selective spatial attention (SSA) were monitored in the Làt and in the Olton maze by duration of rearings and working memory, respectively. Post mortem neurochemistry in the prefrontal cortex (PFc), dorsal (DS) and ventral (VS) striatum of l-Glutamate, l-Aspartate and l-Leucine was performed. All immunized rats showed a clear humoral IgM (but not IgG) immune response against the immunogen, indicating that immunological self-tolerance to DISC1 can be overcome by immunization. NHE rats exhibited a higher unspecific IgM response to adjuvant, indicating an immunological abnormality. The sole anti-DISC1 immunization-specific behavioral in the NHE rats was an increased horizontal activity in the Làt maze. Adjuvant treatment increased vertical activity in both lines, but in the NRB controls it increased rearing and decreased horizontal activity. Liquid chromatography/tandem mass spectrometry analysis of soluble or membrane-trapped neurotransmitters aspartate, glutamate and leucine revealed increased soluble aspartate levels in the ventral striatum of NRB controls after anti-DISC1 immunization. Immune activation by adjuvant independent of simultaneous DISC1 immunization led to other specific changes in NHE and control NRB rats. In DISC1-immunized NHE rats, horizontal activity in Lat maze correlated with membrane-trapped glutamate in PFc and in the NRB rats, duration of rearing in Olton maze correlated with membrane-trapped glutamate in PFc and aspartate in dorsal striatum. In addition to non-specific immune activation (by AD), the postnatal anti-DISC1 immune treatment led to behavioral changes related to mechanisms of activity and attention and had influenced amino acids and synaptic markers in striatum and neocortex in the adult NHE as well as control animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Adjuvant

ADHD:

Attention-deficit hyperactivity disorder

anti-DISC1:

Anti-DISC1 protein immunization

CE:

Collision energy

DA:

Dopamine

DAT:

Dopamine transporter

DISC1:

Disrupted-in-schizophrenia 1

DS:

Dorsal striatum

EAA:

Excitatory amino acids

FE:

Position of first repetitive arm visit

HA:

Horizontal activity

MTF:

Membrane-trapped form

NHE:

Naples high-excitability rat

NRB:

Naples random bred

NSA:

Non-selective attention

NVTC:

Number of arm visits before all arms were visited

PB:

Phosphate buffer vehicle

PFc:

Prefrontal cortex

Pnd:

Post natal days

RT:

Retention time

Sc:

Subcutaneous

SF:

Soluble form

SRM:

Selected reaction monitoring

SSA:

Selective spatial attention

VA:

Vertical activity

VS:

Ventral striatum

References

  • Aspide R, Gironi Carnevale UA, Sergeant JA, Sadile AG (1998) Non-selective attention and nitric oxide in putative animal models of Attention-Deficit Hyperactivity Disorder. Behav Brain Res 95:123–133

    Article  CAS  PubMed  Google Scholar 

  • Aspide R, Fresiello A, De Filippis G, Gironi Carnevale UA, Sadile AG (2000) Non selective attention in a rat model of hyperactivity and attention deficit: subchronic methylphenidate and nitric oxide synthesis inhibitor treatment. Neurosci Biobehav Rev 24:59–71

    Article  CAS  PubMed  Google Scholar 

  • Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  CAS  PubMed  Google Scholar 

  • Bader V, Ottis P, Pum M, Huston JP, Korth C (2012a) Generation, purification, and characterization of cell-invasive DISC1 protein species. J Vis Exp 66:e4132. doi:10.3791/4132

    PubMed  Google Scholar 

  • Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin CY, Ishizuka K, Sawa A, Ramos A, Rosa I, García Á, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Järvelin MR, Hennah W, Korth C (2012b) Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 21:4406–4418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berke JD, Breck JT, Eichenbaum H (2009) Striatal versus hippocampal representations during win-stay maze performance. J Neurophysiol 101:1575–1587

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandon NJ, Sawa A (2011) Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 12:707–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadhurst PL (1960) Experiments in psychogenetics: application of biometrical genetics to the inheritance of behavior. In: Eysenck HJ (ed) Experiments in personality, vol I., Psychogenetics and PsychopharmacologyRoutledge, Regan Paul, London, pp 1–102

    Google Scholar 

  • Buzsaki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Gonzalez-Lima F, Sadile AG (2002) Impaired metabolic capacity in the perirhinal and posterior parietal cortex lead to dissociation between attentional, motivational and spatial components of exploration in the Naples high excitability rat line. Behav Brain Res 130:133–140

    Article  CAS  PubMed  Google Scholar 

  • Gironi Carnevale UA, Vitullo E, Varriale B, Ruocco LA, Sadile AG (2007) A classical Mendelian cross-breeding study of the Naples high and low excitability rat lines. Behav Brain Res 183:130–140

    Article  CAS  PubMed  Google Scholar 

  • Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ, Makino Y, Seshadri AJ, Ishizuka K, Srivastava DP, Xie Z, Baraban JM, Houslay MD, Tomoda T, Brandon NJ, Kamiya A, Yan Z, Penzes P, Sawa A (2010) Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 13:327–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hölm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Jacobsen KK, Halmoy A, Sanchez-Mora C, Ramos-Quiroga JA, Cormand B, Haavik J, Johansson S (2013) DISC1 in adult ADHD patients: an association study in two European samples. Am J Med Genet B Neuropsychiatr Genet 162B:227–234

    Article  PubMed  Google Scholar 

  • Korth C (2012) Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 6:134–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leliveld SR, Bader V, Hendriks P, Prikulis I, Sajnani G, Requena JR, Korth C (2008) Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci 28:3839–3845

    Article  CAS  PubMed  Google Scholar 

  • Leliveld SR, Hendriks P, Michel M, Sajnani G, Bader V, Trossbach S, Prikulis I, Hartmann R, Jonas E, Willbold D, Requena JR, Korth C (2009) Oligomer assembly of the C-terminal DISC1 domain (640-854) is controlled by self-association motifs and disease-associated polymorphism S704C. Biochemistry 48:7746–7755

    Article  CAS  PubMed  Google Scholar 

  • Lipp HP, Schwegler H, Heimrich B, Cerbone A, Sadile AG (1987) Strain-specific correlations between hippocampal structural traits and habituation in a spatial novelty situation. Behav Brain Res 24:111–123

    Article  CAS  PubMed  Google Scholar 

  • Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G (2011) Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci Biobehav Rev 35:1722–1739

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    Article  CAS  PubMed  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Moser EI, Wultz B, Sagvolden T (1988) Component analyses differentiate between exploratory behaviour of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 29:200–206

    Article  CAS  PubMed  Google Scholar 

  • Neunuebel JP, Yoganarasimha D, Rao G, Knierim JJ (2013) Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J Neurosci 33:9246–9258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, Lu L, Tomasito S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65:480–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ottis P, Bader V, Trossbach S, Kretzschmar H, Michel M, Leliveld SR, Korth C (2011) Convergence of two independent mental disease genes on the protein level: recruitment of dysbindin to cell invasive DISC1 aggresomes. Biol Psychiatry 70:604–610

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates. Academic Press, London

    Google Scholar 

  • Pogorelov VM, Nomura J, Kim J, Kannan G, Ayhan Y, Yang C, Taniguchi Y, Abazyan B, Valentine H, Krasnova IN, Kamiya A, Cadet JL, Wong DF, Pletnikov MV (2012) Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 62:1242–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prusiner SB (2001) Shattuck Lecture—Neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Ruocco LA, de Souza Silva MA, Topic B, Mattern C, Huston JP, Sadile AG (2009a) Intranasal application of dopamine reduces activity and improves attention in Naples High Excitability Rats that feature the mesocortical variant of ADHD. Eur Neuropsychopharmacol 19:693–701

    Article  CAS  PubMed  Google Scholar 

  • Ruocco LA, Sadile AG, Gironi Carnevale UA (2009b) Modeling the mesocortical variant of ADHD: the Naples high excitability rat. In: Gordon SM, Mitchell AM (eds) Attention Deficit Hyperactivity Disorder. Nova Science, New York, pp 85–106

    Google Scholar 

  • Ruocco LA, Gironi Carnevale UA, Treno C, Sadile AG, Melisi D, Arra C, Ibba M, Schirru C, Carboni E (2010) Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples High-Excitability rats. Behav Brain Res 210:99–106

    Article  CAS  PubMed  Google Scholar 

  • Ruocco LA, Romano E, Treno C, Lacivita E, Claudio A, Gironi-Carnevale UA, Travaglini D, Leopoldo M, Laviola G, Sadile AG, Adriani W (2014a) Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples high excitability rats. Synapse 68:159–167

    Article  CAS  PubMed  Google Scholar 

  • Ruocco LA, Treno C, Gironi Carnevale UA, Arra C, Mattern C, Huston JP, de Souza Silva MA, Nikolaus S, Scorziello A, Nieddu M, Boatto G, Illiano P, Pagano C, Tino A, Sadile AG (2014c) Prepuberal intranasal dopamine treatment in an animal model of ADHD ameliorates deficient spatial attention, working memory, amino acid transmitters and synaptic markers in prefrontal cortex, ventral and dorsal striatum. Amino Acids 46(9):2105–2122

    Article  CAS  PubMed  Google Scholar 

  • Sadile AG (1996) Long-term habituation of theta-related activity components of albino rats in the Làt-maze. In. In: Sanberg PR, Ossenkopp KP, Kavaliers M (eds) Motor activity and movement disorders: measurement and analysis. Humana Press, New York, pp 1–54

    Google Scholar 

  • Sadile AG, Gironi Carnevale UA, Vitullo E, Cioffi LA, Welzl H, Bättig K (1988) Maze learning of the Naples High- and Low-Excitability rat lines. Adv Biosci 70:177–180

    Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Shechter R (2010a) Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6:405–410

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Shechter R (2010b) Protective autoimmunity functions by intracranial immunosurveillance to support the mind: the missing link between health and disease. Mol Psychiatry 15:342–354

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Kipnis J, Rivest S, Prat A (2013) How do immune cells support and shape the brain in health, disease, and aging? J Neurosci 33:17587–17596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:2495–2500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viggiano D, Vallone D, Welzl H, Sadile AG (2002) The Naples high- and low excitability rats: selective breeding, behavioral profile, morphometry and molecular biology of the mesocortical dopamine system. Behav Genet 32:315–333

    Article  PubMed  Google Scholar 

  • Vomund S, Tapir S, Reiner O, De Souza Silva AM, Korth C (2013) Generation of topically transgenic rats and in vivo screening by bioluminescence imaging. J Vis Exp 79:e50146. doi:10.3791/50146

    PubMed  Google Scholar 

  • Wei J, Graziane NM, Wang H, Zhong P, Wang Q, Liu W, Hayashi-Takagi A, Korth C, Sawa A, Brandon NJ, Yan Z (2013) Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia-1. Biol Psychiatry 75:414–424

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Young Investigator Project 2009–2012 from the Italian Ministry of Health to LAR and funding support by the Brain Behavior and Research Foundation (NARSAD Independent Investigator Award #20350), NEURON-ERANET (“DISCover”, BMBF 01EW1003), and EU-FP MC-ITN “IN-SENS” #607616) to C. K. M. A. de Souza Silva was supported by a Heisenberg Fellowship SO 1032/5-1 and EU-FP7 (MC-ITN-“In-SENS”—# 607616). LAR, G. Boatto and A. Tino share equal first author dignity. C. Korth and AGS share last author dignity.

Conflict of interest

None of the authors declare any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sadile.

Additional information

A. G. Sadile and C. Korth share the last authorship position.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruocco, L.A., Treno, C., Gironi Carnevale, U.A. et al. Immunization with DISC1 protein in an animal model of ADHD influences behavior and excitatory amino acids in prefrontal cortex and striatum. Amino Acids 47, 637–650 (2015). https://doi.org/10.1007/s00726-014-1897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1897-6

Keywords

Navigation