Chondrocytic cells express the taurine transporter on their plasma membrane and regulate its expression under anisotonic conditions

Abstract

Taurine is a small organic osmolyte which participates in cell volume regulation. Chondrocytes have been shown to accumulate and release taurine; in bone, taurine participates in bone metabolism. However, its role in skeletal cells is poorly understood, especially in chondrocytes. This study investigated the regulation of taurine transporter in chondrocytic cells. We examined the transcriptional regulation of the taurine transporter under anisotonia by reporter gene and real-time RT-PCR assays. The effect of providing supplementary taurine on cell viability was evaluated with the lactate dehydrogenase release assay. The localization of the taurine transporter in human chondrosarcoma cells was studied by overexpressing a taurine transporter-enhanced green fluorescent protein. We observed that the transcription of the taurine transporter gene was up-regulated in hypertonic conditions. Hyperosmolarity-related cell death could be partly abolished by taurine supplementation in the medium. As expected, the fluorescently labeled taurine transporter localized at the plasma membrane. In polarized epithelial MDCK cells, the strongest fluorescence signal was located in the lateral cell membrane area. We also observed that the taurine transporter gene was expressed in several human tissues and malignant cell lines. This is the first study to present information on the transcriptional regulation of taurine transporter gene and the localization of the taurine transporter protein in chondrocytic cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  2. Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M, Burdi R, Camerino C, Fraysse B, De Luca A (2004) Taurine and skeletal muscle disorders. Neurochem Res 29:135–142

    Article  PubMed  Google Scholar 

  3. Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P, Blanchard JM (1985) Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res 13:1431–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Froger N, Jammoul F, Gaucher D, Cadetti L, Lorach H, Degardin J, Pain D, Dubus E, Forster V, Ivkovic I, Simonutti M, Sahel JA, Picaud S (2013) Taurine is a crucial factor to preserve retinal ganglion cell survival. Adv Exp Med Biol 775:69–83

    Article  CAS  PubMed  Google Scholar 

  5. Hall AC (1995) Volume-sensitive taurine transport in bovine articular chondrocytes. J Physiol 484:755–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hall AC, Bush PG (2001) The role of a swelling-activated taurine transport pathway in the regulation of articular chondrocyte volume. Pflugers Arch 442:771–781

    Article  CAS  PubMed  Google Scholar 

  7. Han X, Budreau AM, Chesney RW (2000) Cloning and characterization of the promoter region of the rat taurine transporter (TauT) gene. Adv Exp Med Biol 483:97–108

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  9. Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H (1986) Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum 29:400–410

    Article  CAS  PubMed  Google Scholar 

  10. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  11. Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J (2004) Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J 382:177–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ito T, Muraoka S, Takahashi K, Fujio Y, Schaffer SW, Azuma J (2009) Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Adv Exp Med Biol 643:65–74

    Article  CAS  PubMed  Google Scholar 

  13. Jeon SH, Lee MY, Kim SJ, Joe SG, Kim GB, Kim IS, Kim NS, Hong CU, Kim SZ, Kim JS, Kang HS (2007) Taurine increases cell proliferation and generates an increase in [Mg2+]i accompanied by ERK 1/2 activation in human osteoblast cells. FEBS Lett 581:5929–5934

    Article  CAS  PubMed  Google Scholar 

  14. Kaitainen S, Mähönen AJ, Lappalainen R, Kröger H, Lammi J, Qu MC (2013) TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication 5:025009

    Article  PubMed  Google Scholar 

  15. Kevresan S, Kuhajda K, Kandrac J, Fawcett JP, Mikov M (2006) Biosynthesis of bile acids in mammalian liver. Eur J Drug Metab Pharmacokinet 31:145–156

    Article  CAS  PubMed  Google Scholar 

  16. Koide M, Okahashi N, Tanaka R, Kazuno K, Shibasaki K, Yamazaki Y, Kaneko K, Ueda N, Ohguchi M, Ishihara Y, Noguchi T, Nishihara T (1999) Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid. Arch Oral Biol 44:711–719

    Article  CAS  PubMed  Google Scholar 

  17. Lambert IH (2004) Modulation of volume-sensitive taurine release from NIH3T3 mouse fibroblasts by reactive oxygen species. Adv Exp Med Biol 559:369–378

    Article  CAS  PubMed  Google Scholar 

  18. Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623S

    Article  CAS  PubMed  Google Scholar 

  19. Marcinkiewicz J, Kontny E (2012) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  PubMed Central  PubMed  Google Scholar 

  20. Neidlinger-Wilke C, Wilke HJ, Claes L (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 12:70–78

    Article  CAS  PubMed  Google Scholar 

  21. Qu CJ, Pöytäkangas T, Jauhiainen M, Auriola S, Lammi MJ (2009) Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension. Cell Tissue Res 337:103–111

    Article  CAS  PubMed  Google Scholar 

  22. Qu C, Lindeberg H, Ylärinne JH, Lammi MJ (2012) Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures. Cell Tissue Res 348:109–117

    Article  CAS  PubMed  Google Scholar 

  23. Qu C, Puttonen KA, Lindeberg H, Ruponen M, Hovatta O, Koistinaho J, Lammi MJ (2013) Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 45:1802–1812

    Article  CAS  PubMed  Google Scholar 

  24. Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Takigawa M, Tajima K, Pan HO, Enomoto M, Kinoshita A, Suzuki F, Takano Y, Mori Y (1989) Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes. Cancer Res 49:3996–4002

    CAS  PubMed  Google Scholar 

  26. Tsai TT, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV (2007) MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. J Bone Miner Res 22:965–974

    Article  CAS  PubMed  Google Scholar 

  27. Turunen SM, Lammi MJ, Saarakkala S, Koistinen A, Korhonen RK (2012) Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant. Biomech Model Mechanobiol 11:665–675

    Article  PubMed  Google Scholar 

  28. Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    Article  CAS  PubMed  Google Scholar 

  29. Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S6. doi:10.1186/1423-0127-17-S1-S6

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  31. Yuan LQ, Xie H, Luo XH, Wu XP, Zhou HD, Lu Y, Liao EY (2006) Taurine transporter is expressed in osteoblasts. Amino Acids 31:157–163

    Article  CAS  PubMed  Google Scholar 

  32. Yuan LQ, Liu W, Cui RR, Wang D, Meng JC, Xie H, Wu XP, Zhou HD, Lu Y, Liao EY (2010) Taurine inhibits osteoclastogenesis through the taurine transporter. Amino Acids 39:89–99

    Article  CAS  PubMed  Google Scholar 

  33. Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW, Liu WD, Wang ZG, Li YW, Li DZ, Lv GH, Yin BL (2011) Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 44:618–623

    CAS  PubMed  Google Scholar 

  34. Zhou C, Zhang X, Xu L, Wu T, Cui L, Xu D (2014) Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway. Amino Acids 46:1673–1680

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Elina Reinikainen and Eija Rahunen for their excellent laboratory assistance. This study was supported by grant from the Finnish Cultural Foundation, North Savo Regional Fund.

Conflict of interest

The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hannu M. Karjalainen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karjalainen, H.M., Qu, C., Leskelä, S.S. et al. Chondrocytic cells express the taurine transporter on their plasma membrane and regulate its expression under anisotonic conditions. Amino Acids 47, 561–570 (2015). https://doi.org/10.1007/s00726-014-1888-7

Download citation

Keywords

  • Taurine transporter
  • Human chondrosarcoma
  • Chondrocytic cell
  • Cell stretching