Skip to main content
Log in

System l amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-l-tyrosine (FET)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript


O-(2-fluoroethyl)-l-tyrosine (FET) labeled with fluorine-18 is an important and specific tracer for diagnostics of glioblastoma via positron emission tomography (PET). However, the mechanism of its quite specific accumulation in tumor tissue has not been understood so far. In this work we demonstrate that [3H]l-tyrosine is primarily transported by the system L transporter LAT1 in human LN229 glioblastoma cells. FET reduced tyrosine transport, suggesting that it shares the same uptake pathway. More importantly, accumulation of FET was significantly reduced after siRNA-mediated downregulation of LAT1. Xenopus laevis oocytes expressing human LAT1 together with the glycoprotein 4F2hc (necessary to pull LAT-1 to the plasma membrane) exhibited a similar accumulation of FET as observed in glioblastoma cells. In contrast, no accumulation was observed in control oocytes, not overexpressing an exogenous transporter. Because LAT1 works exclusively as an exchanger of amino acids, substrates at one side of the membrane stimulate exchange against substrates at the other side. Extracellular FET stimulated the efflux of intracellular [3H]l-leucine, demonstrating that FET is indeed an influx substrate for LAT1. However, FET injected into oocytes was not able to stimulate uptake of extracellular [3H]l-leucine, indicating that FET is not a good efflux substrate. Our data, therefore, suggest that FET is trapped within cells due to the asymmetry of its intra- and extracellular recognition by LAT1. If also found for other transporters in tumor cells, asymmetric substrate recognition may be further exploited for tumor-specific accumulation of PET-tracers and/or other tumor-related drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  • Broer S (2008) Amino Acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286

    Article  CAS  PubMed  Google Scholar 

  • Broer S, Palacin M (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J 436(2):193–211. doi:10.1042/BJ20101912

    Article  PubMed  Google Scholar 

  • Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–76

    CAS  PubMed  Google Scholar 

  • Christensen HN, Handlogten ME (1979) Interaction between parallel transport systems examined with tryptophan and related amino acids. J Neural Transm Suppl 15:1–13

    CAS  PubMed  Google Scholar 

  • Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997) Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36(21):6462–6468

    Article  CAS  PubMed  Google Scholar 

  • Coenen HH, Elsinga PH, Iwata R, Kilbourn MR, Pillai MR, Rajan MG, Wagner HN Jr, Zaknun JJ (2010) Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl Med Biol 37(7):727–740. doi:10.1016/j.nucmedbio.2010.04.185

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N (2013) LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol 191(8):4080–4085. doi:10.4049/jimmunol.1300923

    Article  CAS  PubMed  Google Scholar 

  • Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med 40(8):1367–1373

    CAS  PubMed  Google Scholar 

  • Hoffmann J, Gorodetskaia A, Hollmann M (2006) Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Mol Cell Neurosci 33(3):335–343. doi:10.1016/j.mcn.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • Hyde R, Taylor PM, Hundal HS (2003) Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 373:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, von Schulthess GK, Buck A (2002) 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29(5):648–654. doi:10.1007/s00259-002-0780-y

    Article  CAS  PubMed  Google Scholar 

  • Lahoutte T, Caveliers V, Camargo SM, Franca R, Ramadan T, Veljkovic E, Mertens J, Bossuyt A, Verrey F (2004) SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J Nucl Med 45(9):1591–1596

    CAS  PubMed  Google Scholar 

  • Langen KJ, Pauleit D, Coenen HH (2002) 3-[123I]Iodo-alpha-methyl-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 29(6):625–631

    Article  CAS  PubMed  Google Scholar 

  • Langen KJ, Jarosch M, Muhlensiepen H, Hamacher K, Broer S, Jansen P, Zilles K, Coenen HH (2003) Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 30(5):501–508

    Article  CAS  PubMed  Google Scholar 

  • Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D (2006) O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33(3):287–294. doi:10.1016/j.nucmedbio.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F (2009) Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 29(9):1491–1502. doi:10.1038/jcbfm.2009.72

    Article  CAS  PubMed  Google Scholar 

  • Makrides V, Bauer R, Weber W, Wester HJ, Fischer S, Hinz R, Huggel K, Opfermann T, Herzau M, Ganapathy V, Verrey F, Brust P (2007) Preferred transport of O-(2-[18F]fluoroethyl)-d-tyrosine (D-FET) into the porcine brain. Brain Res 1147:25–33 S0006-8993(07)00333-2

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21(4):580–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Muller HW, Coenen HH, Langen KJ (2003) Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-l-tyrosine. Eur J Nucl Med Mol Imaging 30(4):519–524. doi:10.1007/s00259-003-1118-0

    Article  CAS  PubMed  Google Scholar 

  • Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, Herzog H, Broer S, Coenen HH, Langen KJ (2005) PET with O-(2-18F-Fluoroethyl)-l-tyrosine in peripheral tumors: first clinical results. J Nucl Med 46(3):411–416 pii:46/3/411

    CAS  PubMed  Google Scholar 

  • Rau FC, Weber WA, Wester HJ, Herz M, Becker I, Kruger A, Schwaiger M, Senekowitsch-Schmidtke R (2002) O-(2-[18F]Fluoroethyl)- l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 29(8):1039–1046. doi:10.1007/s00259-002-0821-6

    Article  CAS  PubMed  Google Scholar 

  • Rotmann A, Simon A, Martine U, Habermeier A, Closs EI (2007) Activation of classical protein kinase C decreases transport via systems y + and y + L. Am J Physiol Cell Physiol 292(6):2259–2268

    Article  Google Scholar 

  • Shikano N, Kanai Y, Kawai K, Ishikawa N, Endou H (2003) Characterization of 3-[125I]iodo-alpha-methyl-l-tyrosine transport via human L-type amino acid transporter 1. Nucl Med Biol 30(1):31–37 S0969805102003505

    Article  CAS  PubMed  Google Scholar 

  • Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. doi:10.1038/ni.2556

    PubMed Central  PubMed  Google Scholar 

  • Taylor MA, Smith LD (1987) Accumulation of free amino acids in growing Xenopus laevis oocytes. Dev Biol 124(1):287–290

    Article  CAS  PubMed  Google Scholar 

  • Verrey F (2003) System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445(5):529–533

    CAS  PubMed  Google Scholar 

  • Wang L, Qu W, Lieberman BP, Plossl K, Kung HF (2011) Synthesis, uptake mechanism characterization and biological evaluation of 18F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents. Nucl Med Biol 38(1):53–62 S0969-8051(10)00390-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40(1):205–212

    CAS  PubMed  Google Scholar 

Download references


This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) to EIC (Cl100/5-1) and to FR (Ro 985/31-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ellen I. Closs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habermeier, A., Graf, J., Sandhöfer, B.F. et al. System l amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-l-tyrosine (FET). Amino Acids 47, 335–344 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: