Advertisement

Amino Acids

, Volume 47, Issue 10, pp 2113–2126 | Cite as

Autophagy and amino acid metabolism in the brain: implications for epilepsy

  • Eloy Bejarano
  • José Antonio Rodríguez-NavarroEmail author
Review Article

Abstract

Autophagy is a catabolic pathway responsible for the maintenance of the tissue and organism homeostasis. Several amino acids regulate autophagic activity in different tissues, such as liver and muscle, but much less is known about this regulation in the brain. The lack of autophagy in neurons leads to a strong neurodegenerative phenotype and epileptic disorders. We summarize the current knowledge about the regulation of autophagy mediated by amino acids and how macroautophagy could serve as source of amino acids. We review the contribution of macroautophagy in the brain physiology and pathology emphasizing the relevancy of the proper control of amino acid levels such as glutamate and GABA in the brain due to its role as neurotransmitters and energy source. Furthermore, we discuss how malfunction in autophagy may result in pathological consequences, because many genetic epileptic disorders are related to signaling or metabolic pathways controlling both macroautophagy and amino acid metabolism in the brain.

Keywords

Macroautophagy Leucine Glutamine Epilepsy Ketogenic diet mTOR 

Notes

Acknowledgments

We thank Dr. Ana Maria Cuervo PhD for her invaluable help and support. JARN is supported by Charles H. Revson Senior Fellows in Biomedical Science Program, the Miguel Servet Program of the National Institute of Health Carlos III of Spain and the MINECO Grant SAF2013-45570.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abs E, Goorden SM, Schreiber J, Overwater IE, Hoogeveen-Westerveld M, Bruinsma CF, Aganovic E, Borgesius NZ, Nellist M, Elgersma Y (2013) TORC1-dependent epilepsy caused by acute biallelic Tsc1 deletion in adult mice. Ann Neurol 74:569–579PubMedCrossRefGoogle Scholar
  2. Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR, Knecht E, Rubinsztein DC (2010) Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19:2867–2876PubMedCentralPubMedCrossRefGoogle Scholar
  3. Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343PubMedCrossRefGoogle Scholar
  4. Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653PubMedCrossRefGoogle Scholar
  6. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, Pereira P, Cuervo AM (2012) Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell 23:2156–2169PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bejarano E, Yuste A, Patel B, Stout RF Jr, Spray DC, Cuervo AM (2014) Connexins modulate autophagosome biogenesis. Nat Cell Biol 16(5):401–414. doi: 10.1038/ncb2934
  9. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  10. Bergamini E, Del Roso A, Gori Z, Masiello P, Masini M, Pollera M (1994) Endocrine and amino acid regulation of liver macroautophagy and proteolytic function. Am J Physiol 266:G118–G122PubMedGoogle Scholar
  11. Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci 1114:69–78PubMedCrossRefGoogle Scholar
  12. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326PubMedCrossRefGoogle Scholar
  13. Blouet C, Jo YH, Li X, Schwartz GJ (2009) Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 29:8302–8311PubMedCentralPubMedCrossRefGoogle Scholar
  14. Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA 96:12079–12084PubMedCentralPubMedCrossRefGoogle Scholar
  15. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937PubMedCentralPubMedCrossRefGoogle Scholar
  16. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720PubMedCrossRefGoogle Scholar
  17. Buckmaster PS, Lew FH (2011) Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 31:2337–2347PubMedCentralPubMedCrossRefGoogle Scholar
  18. Burger PM, Mehl E, Cameron PL, Maycox PR, Baumert M, Lottspeich F, De Camilli P, Jahn R (1989) Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 3:715–720PubMedCrossRefGoogle Scholar
  19. Castillo K, Valenzuela V, Matus S, Nassif M, Oñate M, Fuentealba Y, Encina G, Irrazabal T, Parsons G, Court FA, Schneider BL, Armentano D, Hetz C (2013) Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis 14(4):e917CrossRefGoogle Scholar
  20. Chaturvedi R, Reddig K, Li HS (2014) Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila. Proc Natl Acad Sci USA 111:2812–2817PubMedCentralPubMedCrossRefGoogle Scholar
  21. Chen L, Wang H, Vicini S, Olsen RW (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA 97:11557–11562PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cole JT, Sweatt AJ, Hutson SM (2012) Expression of mitochondrial branched-chain aminotransferase and alpha-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat 6:18PubMedCentralPubMedCrossRefGoogle Scholar
  23. Coupe B, Ishii Y, Dietrich MO, Komatsu M, Horvath TL, Bouret SG (2012) Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 15:247–255PubMedCentralPubMedCrossRefGoogle Scholar
  24. Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B, Heredia M, Roma-Mateo C, Mouron S, Juana-Lopez L, Dominguez M, Navarro C, Serratosa JM, Sanchez M, Sanz P, Bovolenta P, Knecht E, Rodriguez de Cordoba S (2012) Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 21:1521–1533PubMedCrossRefGoogle Scholar
  25. Demetriades C, Doumpas N, Teleman AA (2014) Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786–799PubMedCentralPubMedCrossRefGoogle Scholar
  26. Deter RL, Baudhuin P, De Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35:C11–C16PubMedCentralPubMedCrossRefGoogle Scholar
  27. Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci USA 109:E2334–E2342PubMedCentralPubMedCrossRefGoogle Scholar
  28. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358PubMedCrossRefGoogle Scholar
  29. Egan D, Kim J, Shaw RJ, Guan KL (2011a) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644PubMedCrossRefGoogle Scholar
  30. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011b) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461PubMedCentralPubMedCrossRefGoogle Scholar
  31. Eng CH, Yu K, Lucas J, White E, Abraham RT (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3:ra31PubMedGoogle Scholar
  32. Erecinska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem 67:2325–2334PubMedCrossRefGoogle Scholar
  33. Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45:419–430PubMedCrossRefGoogle Scholar
  34. Finn PF, Dice JF (2005) Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 280:25864–25870PubMedCrossRefGoogle Scholar
  35. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Whittemore VH, Thiele EA, Ford JP, Shah G, Cauwel H, Lebwohl D, Sahmoud T, Jozwiak S (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132PubMedCrossRefGoogle Scholar
  36. Garcia-Cazorla A, Oyarzabal A, Fort J, Robles C, Castejon E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, Palacin M, Rodriguez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-Llitjos M, Vilaseca MA, Ormaizabal A, Pristoupilova A, Agullo SB (2014) Two novel mutations in the BCKDK (Branched-Chain Keto-Acid Dehydrogenase Kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 35:470–477PubMedCrossRefGoogle Scholar
  37. Ginet V, Spiehlmann A, Rummel C, Rudinskiy N, Grishchuk Y, Luthi-Carter R, Clarke PG, Truttmann AC, Puyal J (2014) Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy 10(5):846–860. doi: 10.4161/auto.28264
  38. Gupta M, Polinsky M, Senephansiri H, Snead OC, Jansen EE, Jakobs C, Gibson KM (2004) Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency. Neurobiol Dis 16:556–562PubMedCrossRefGoogle Scholar
  39. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226PubMedCentralPubMedCrossRefGoogle Scholar
  40. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424PubMedCrossRefGoogle Scholar
  41. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494PubMedCrossRefGoogle Scholar
  42. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  43. Hartman AL, Stafstrom CE (2013) Harnessing the power of metabolism for seizure prevention: focus on dietary treatments. Epilepsy Behav 26:266–272PubMedCentralPubMedCrossRefGoogle Scholar
  44. He C, Sumpter R Jr, Levine B (2012) Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 8:1548–1551PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hernandez-Fisac I, Fernandez-Pascual S, Ortsater H, Pizarro-Delgado J, Martin del Rio R, Bergsten P, Tamarit-Rodriguez J (2006) Oxo-4-methylpentanoic acid directs the metabolism of GABA into the Krebs cycle in rat pancreatic islets. Biochem J 400:81–89PubMedCentralPubMedCrossRefGoogle Scholar
  46. Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, Huang Y (2010) Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 40:193–199PubMedCentralPubMedCrossRefGoogle Scholar
  47. Hutson SM, Lieth E, LaNoue KF (2001) Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131:846S–850SPubMedGoogle Scholar
  48. Hyde R, Taylor PM, Hundal HS (2003) Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 373:1–18PubMedCentralPubMedCrossRefGoogle Scholar
  49. Joshi MA, Jeoung NH, Obayashi M, Hattab EM, Brocken EG, Liechty EA, Kubek MJ, Vattem KM, Wek RC, Harris RA (2006) Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J 400:153–162PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133:2052S–2056SPubMedGoogle Scholar
  51. Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H, Kim JY, Miyamoto K, Takeda E, Endou H (2000) Transport properties of a system y + L neutral and basic amino acid transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793PubMedCrossRefGoogle Scholar
  52. Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 14:173–183PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2013) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13:258–265CrossRefGoogle Scholar
  54. Kim HW, Ha SH, Lee MN, Huston E, Kim DH, Jang SK, Suh PG, Houslay MD, Ryu SH (2008) Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol 30:5406–5420CrossRefGoogle Scholar
  55. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141PubMedCentralPubMedCrossRefGoogle Scholar
  56. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCentralPubMedCrossRefGoogle Scholar
  57. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  58. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  59. Kurian MA, Gissen P, Smith M, Heales S Jr, Clayton PT (2011) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10:721–733PubMedCrossRefGoogle Scholar
  60. Kvamme E, Roberg B, Torgner IA (2000) Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res 25:1407–1419PubMedCrossRefGoogle Scholar
  61. Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim JM, Chung J (2007) ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep 8:360–365PubMedCentralPubMedCrossRefGoogle Scholar
  62. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5:e15394PubMedCentralPubMedCrossRefGoogle Scholar
  63. Lellos V, Tselentis V, Galanopoulos E, Philippidis H, Palaiologos G (1991) Leucine: effector of phosphate activated glutaminase in rat cerebral cortex. Neurochem Res 16:67–71PubMedCrossRefGoogle Scholar
  64. Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155PubMedCrossRefGoogle Scholar
  65. Lichtenstein A, Minogue PJ, Beyer EC, Berthoud VM (2012) Autophagy: a pathway that contributes to connexin degradation. J Cell Sci 124:910–920CrossRefGoogle Scholar
  66. Lin TC, Chen YR, Kensicki E, Li AY, Kong M, Li Y, Mohney RP, Shen HM, Stiles B, Mizushima N, Lin LI, Ann DK (2012) Autophagy: resetting glutamine-dependent metabolism and oxygen consumption. Autophagy 8:1477–1493PubMedCentralPubMedCrossRefGoogle Scholar
  67. Lorin S, Tol MJ, Bauvy C, Strijland A, Pous C, Verhoeven AJ, Codogno P, Meijer AJ (2013) Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9:850–860PubMedCentralPubMedCrossRefGoogle Scholar
  68. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedCrossRefGoogle Scholar
  69. Mansuy-Schlick V, Tolle F, Delage-Mourroux R, Fraichard A, Risold PY, Jouvenot M (2006) Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR. Brain Res 1073–1074:83–87PubMedCrossRefGoogle Scholar
  70. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP (2011) Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045–1051PubMedCentralPubMedCrossRefGoogle Scholar
  71. Mattson MP (2010) The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2:5PubMedCentralPubMedGoogle Scholar
  72. McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M (2011) The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52:e7–e11PubMedCentralPubMedCrossRefGoogle Scholar
  73. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59:525–533PubMedCentralPubMedCrossRefGoogle Scholar
  74. McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y (2012) Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci 32:15704–15714PubMedCentralPubMedCrossRefGoogle Scholar
  75. Meng XF, Yu JT, Song JH, Chi S, Tan L (2013) Role of the mTOR signaling pathway in epilepsy. J Neurol Sci 332:4–15PubMedCrossRefGoogle Scholar
  76. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedCentralPubMedCrossRefGoogle Scholar
  77. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCentralPubMedCrossRefGoogle Scholar
  78. Mortimore GE, Poso AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7:539–564PubMedCrossRefGoogle Scholar
  79. Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270:174–176PubMedCrossRefGoogle Scholar
  80. Mortimore GE, Wert JJ Jr, Miotto G, Venerando R, Kadowaki M (1994) Leucine-specific binding of photoreactive Leu7-MAP to a high molecular weight protein on the plasma membrane of the isolated rat hepatocyte. Biochem Biophys Res Commun 203:200–208PubMedCrossRefGoogle Scholar
  81. Naito T, Kuma A, Mizushima N (2013) Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. J Biol Chem 288:21074–21081PubMedCentralPubMedCrossRefGoogle Scholar
  82. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506PubMedCrossRefGoogle Scholar
  83. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534PubMedCentralPubMedCrossRefGoogle Scholar
  84. Nixon RA (2014) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997CrossRefGoogle Scholar
  85. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122PubMedCrossRefGoogle Scholar
  86. Nylen K, Velazquez JL, Likhodii SS, Cortez MA, Shen L, Leshchenko Y, Adeli K, Gibson KM, Burnham WM, Snead OC 3rd (2008) A ketogenic diet rescues the murine succinic semialdehyde dehydrogenase deficient phenotype. Exp Neurol 210:449–457PubMedCentralPubMedCrossRefGoogle Scholar
  87. Obayashi M, Sato Y, Harris RA, Shimomura Y (2001) Regulation of the activity of branched-chain 2-oxo acid dehydrogenase (BCODH) complex by binding BCODH kinase. FEBS Lett 491:50–54PubMedCrossRefGoogle Scholar
  88. Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280:31582–31586PubMedCrossRefGoogle Scholar
  89. Patel AB, Lai JC, Chowdhury GM, Hyder F, Rothman DL, Shulman RG, Behar KL (2014) Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA 111:5385–5390PubMedCentralPubMedCrossRefGoogle Scholar
  90. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529PubMedCentralPubMedCrossRefGoogle Scholar
  91. Pizarro-Delgado J, Hernandez-Fisac I, Martin-Del-Rio R, Tamarit-Rodriguez J (2009) Branched-chain 2-oxoacid transamination increases GABA-shunt metabolism and insulin secretion in isolated islets. Biochem J 419:359–368PubMedCrossRefGoogle Scholar
  92. Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS (2011) A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 43:322–329PubMedCentralPubMedCrossRefGoogle Scholar
  93. Rodriguez-Navarro JA, Cuervo AM (2010) Autophagy and lipids: tightening the knot. Semin Immunopathol 32:343–353PubMedCrossRefGoogle Scholar
  94. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438PubMedCrossRefGoogle Scholar
  95. Rodriguez-Navarro JA, Kaushik S, Koga H, Dall’Armi C, Shui G, Wenk MR, Di Paolo G, Cuervo AM (2012) Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci USA 109(12):E705–E714PubMedCentralPubMedCrossRefGoogle Scholar
  96. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2008) Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303CrossRefGoogle Scholar
  97. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338PubMedCentralPubMedCrossRefGoogle Scholar
  98. Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targets CNS Neurol Disord 2:269–277PubMedCrossRefGoogle Scholar
  99. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366PubMedCrossRefGoogle Scholar
  100. Schwartz GJ (2013) Central leucine sensing in the control of energy homeostasis. Endocrinol Metab Clin North Am 42:81–87PubMedCentralPubMedCrossRefGoogle Scholar
  101. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2012) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433CrossRefGoogle Scholar
  102. Shestopalov AI, Kristal BS (2007) Branched chain keto-acids exert biphasic effects on alpha-ketoglutarate-stimulated respiration in intact rat liver mitochondria. Neurochem Res 32:947–951PubMedCrossRefGoogle Scholar
  103. Singh R, Cuervo AM (2013) Autophagy in the cellular energetic balance. Cell Metab 13:495–504CrossRefGoogle Scholar
  104. Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21:117–127PubMedCrossRefGoogle Scholar
  105. Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ (2014) A local glutamate–glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900PubMedCentralPubMedCrossRefGoogle Scholar
  106. Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K (2011) Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 43:690–697PubMedCrossRefGoogle Scholar
  107. Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4:404–408PubMedCrossRefGoogle Scholar
  108. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M, van Zutphen IJ, Mauthe M, Zellmer S, Pals C, Verhagen LP, Groot Koerkamp MJ, Braat AK, Dansen TB, Holstege FC, Gebhardt R, Burgering BM, Coffer PJ (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14:829–837PubMedCrossRefGoogle Scholar
  109. Waagepetersen HS, Sonnewald U, Schousboe A (2003) Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: functional implications. Neuroscientist 9:398–403PubMedCrossRefGoogle Scholar
  110. Wong E, Cuervo AM (2011) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811CrossRefGoogle Scholar
  111. Yan H, Zhang X, Hu W, Ma J, Hou W, Wang X, Gao J, Shen Y, Lv J, Ohtsu H, Han F, Wang G, Chen Z (2014) Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms. Nat Commun 5:3334PubMedCentralPubMedGoogle Scholar
  112. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90PubMedCrossRefGoogle Scholar
  113. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36:2531–2540PubMedCrossRefGoogle Scholar
  114. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Lazarow A, Luhovyy B, Wehrli S (2005) Response of brain amino acid metabolism to ketosis. Neurochem Int 47:119–128PubMedCrossRefGoogle Scholar
  115. Yudkoff M, Daikhin Y, Horyn O, Nissim I (2008) Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia 49(Suppl 8):73–75PubMedCentralPubMedCrossRefGoogle Scholar
  116. Zaganas I, Waagepetersen HS, Georgopoulos P, Sonnewald U, Plaitakis A, Schousboe A (2001) Differential expression of glutamate dehydrogenase in cultured neurons and astrocytes from mouse cerebellum and cerebral cortex. J Neurosci Res 66:909–913PubMedCrossRefGoogle Scholar
  117. Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453PubMedCentralPubMedCrossRefGoogle Scholar
  118. Zeng LH, Rensing NR, Wong M (2009a) Developing antiepileptogenic drugs for acquired epilepsy: targeting the mammalian target of rapamycin (mTOR) pathway. Mol Cell Pharmacol 1:124–129PubMedCentralPubMedCrossRefGoogle Scholar
  119. Zeng LH, Rensing NR, Wong M (2009b) The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29:6964–6972PubMedCentralPubMedCrossRefGoogle Scholar
  120. Zeng LH, McDaniel S, Rensing NR, Wong M (2011) Regulation of cell death and epileptogenesis by the mammalian target of rapamycin (mTOR): a double-edged sword? Cell Cycle 9:2281–2285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Eloy Bejarano
    • 1
  • José Antonio Rodríguez-Navarro
    • 1
    • 2
    Email author
  1. 1.Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y CajalInstituto Ramon y Cajal de Investigaciones SanitariasMadridSpain

Personalised recommendations