Advertisement

Amino Acids

, Volume 46, Issue 11, pp 2503–2516 | Cite as

Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise

  • Jean FarupEmail author
  • Stine Klejs Rahbek
  • Inge Skovgaard Knudsen
  • Frank de Paoli
  • Abigail L. Mackey
  • Kristian Vissing
Original Article

Abstract

Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

Keywords

Branched chain amino acids Whey protein Satellite cell Pax7 Eccentric exercise 

Notes

Acknowledgments

We thank the participants for their participation in the project. Department of Rheumatology, Aarhus University Hospital, is thanked for supplying apparatus for blood sampling. Janni Moesgaard Jensen and Gitte Kaiser Hartvigsen are thanked for assistance in collecting blood samples and during biopsy preparation. The F1.652 and the A4.591 monoclonal antibodies developed by Helen M. Blau were obtained from the Developmental Studies Hybridoma Bank under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA, USA.

Conflict of interest

The study was funded by Arla Foods Ingredients Group P/S, DK and Nordea Foundation (Healthy Ageing grant). The authors declare that they have no conflict of interest.

References

  1. Atherton PJ, Smith K (2012) Muscle protein synthesis in response to nutrition and exercise. J Physiol 590:1049–1057. doi: 10.1113/jphysiol.2011.225003 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Averous J, Gabillard JC, Seiliez I, Dardevet D (2012) Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation. Exp Cell Res 318:217–227. doi: 10.1016/j.yexcr.2011.10.015 PubMedCrossRefGoogle Scholar
  3. Bijur PE, Silver W, Gallagher EJ (2001) Reliability of the visual analog scale for measurement of acute pain. J Soc Acad Emerg Med 8:1153–1157CrossRefGoogle Scholar
  4. Bischoff R (1990) Interaction between satellite cells and skeletal muscle fibers. Development 109:943–952PubMedGoogle Scholar
  5. Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10:504–514. doi: 10.1016/j.stem.2012.04.001 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Buckley JD, Thomson RL, Coates AM, Howe PR, DeNichilo MO, Rowney MK (2010) Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J Sci Med Sport 13:178–181PubMedCrossRefGoogle Scholar
  7. Burd NA et al (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141:568–573. doi: 10.3945/jn.110.135038 PubMedCrossRefGoogle Scholar
  8. Burke L, Deakin V (2000) Clinical sports nutrition, 2nd edn. McGraw-Hill, Beijing, BostonGoogle Scholar
  9. Cermak NM et al (2012) Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc 45(2):230–237. doi: 10.1249/MSS.0b013e318272cf47 CrossRefGoogle Scholar
  10. Christov C et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409. doi: 10.1091/mbc.E06-08-0693 PubMedCrossRefPubMedCentralGoogle Scholar
  11. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. doi: 10.1038/nature03260 PubMedCrossRefGoogle Scholar
  12. Cosgrove BD et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. doi: 10.1038/nm.3464 PubMedPubMedCentralGoogle Scholar
  13. Crameri RM et al (2004) Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol 558:333–340. doi: 10.1113/jphysiol.2004.061846 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjaer M (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583:365–380. doi: 10.1113/jphysiol.2007.128827 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555–564. doi: 10.1038/ncb2763 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dickinson JM et al (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141:856–862. doi: 10.3945/jn.111.139485 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Farup J et al (2012) Muscle morphological and strength adaptations to endurance vs. resistance training. J Strength Cond Res 26:398–407. doi: 10.1519/JSC.0b013e318225a26f PubMedCrossRefGoogle Scholar
  18. Farup J et al (2013) Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scand J Med Sci Sports. doi: 10.1111/sms.12083 (Epub ahead of print)Google Scholar
  19. Fry CS et al (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665. doi: 10.1096/fj.13-239426 PubMedCrossRefGoogle Scholar
  20. Han B, Tong J, Zhu MJ, Ma C, Du M (2008) Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway. Mol Reprod Dev 75:810–817. doi: 10.1002/mrd.20832 PubMedCrossRefGoogle Scholar
  21. He WA et al (2013) NF-kappaB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. doi: 10.1172/JCI68523 Google Scholar
  22. Heinemeier KM et al (2012) GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2012.01459.x PubMedGoogle Scholar
  23. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15:243–256. doi: 10.1038/nrm3772 PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jackman SR, Witard OC, Jeukendrup AE, Tipton KD (2010) Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc 42:962–970PubMedCrossRefGoogle Scholar
  25. Jeong J, Conboy MJ, Conboy IM (2013) Pharmacological inhibition of myostatin/TGF-beta receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes. Acta Pharmacol Sinica 34(8):1052–1060. doi: 10.1038/aps.2013.67 CrossRefGoogle Scholar
  26. Kirby TJ, Triplett NT, Haines TL, Skinner JW, Fairbrother KR, McBride JM (2012) Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids 42:1987–1996. doi: 10.1007/s00726-011-0928-9 PubMedCrossRefGoogle Scholar
  27. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646. doi: 10.1242/dev.067595 PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mackey AL et al (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103:425–431. doi: 10.1152/japplphysiol.00157.2007 PubMedCrossRefGoogle Scholar
  29. Mackey AL, Kjaer M, Charifi N, Henriksson J, Bojsen-Moller J, Holm L, Kadi F (2009) Assessment of satellite cell number and activity status in human skeletal muscle biopsies. Muscle Nerve 40:455–465. doi: 10.1002/mus.21369 PubMedCrossRefGoogle Scholar
  30. Mackey AL, Andersen LL, Frandsen U, Suetta C, Sjogaard G (2010) Distribution of myogenic progenitor cells and myonuclei is altered in women with vs. those without chronically painful trapezius muscle. J Appl Physiol (1985) 109:1920–1929. doi: 10.1152/japplphysiol.00789.2010 CrossRefGoogle Scholar
  31. Mackey AL et al (2011) Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J 25(6):1943–1959. doi: 10.1096/fj.10-176487 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefPubMedCentralGoogle Scholar
  33. McKay BR, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J Physiol 586:5549–5560. doi: 10.1113/jphysiol.2008.160176 PubMedCrossRefPubMedCentralGoogle Scholar
  34. McKay BR, De Lisio M, Johnston AP, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2009) Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One 4:e6027. doi: 10.1371/journal.pone.0006027 PubMedCrossRefPubMedCentralGoogle Scholar
  35. McKay BR, Toth KG, Tarnopolsky MA, Parise G (2010) Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 588:3307–3320. doi: 10.1113/jphysiol.2010.190876 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Michailidis Y et al (2013) Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr 98:233–245. doi: 10.3945/ajcn.112.049163 PubMedCrossRefGoogle Scholar
  37. Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, Mackey AL (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol 107:1600–1611. doi: 10.1152/japplphysiol.00707.2009 PubMedCrossRefPubMedCentralGoogle Scholar
  38. Moller AB, Vendelbo MH, Rahbek SK, Clasen BF, Schjerling P, Vissing K, Jessen N (2013) Resistance exercise, but not endurance exercise, induces IKKbeta phosphorylation in human skeletal muscle of training-accustomed individuals. Pflugers Arch 465:1785–1795. doi: 10.1007/s00424-013-1318-9 PubMedCrossRefGoogle Scholar
  39. Montarras D, L’Honore A, Buckingham M (2013) Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 280(17):4036–4050. doi: 10.1111/febs.12372 PubMedCrossRefGoogle Scholar
  40. Newham DJ, Jones DA, Clarkson PM (1987) Repeated high-force eccentric exercise: effects on muscle pain and damage. Bethesda Md: 1985 63:1381–1386Google Scholar
  41. Parise G (2013) Satellite cells: promoting adaptation over a lifetime. Acta Physiol (Oxf) 210(3):462–464. doi: 10.1111/apha.12219 CrossRefGoogle Scholar
  42. Pasiakos SM, Lieberman HR, McLellan TM (2014) Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. doi: 10.1007/s40279-013-0137-7 (Epub ahead of print)Google Scholar
  43. Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMedGoogle Scholar
  44. Proske U, Allen TJ (2005) Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 33:98–104PubMedCrossRefGoogle Scholar
  45. Rodgers JT et al (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 509:393–396Google Scholar
  46. Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE (2009) A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF- B- and MAPK-dependent mechanism. J Nutr 140:382–391. doi: 10.3945/jn.109.109645 PubMedCrossRefGoogle Scholar
  47. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786PubMedCrossRefGoogle Scholar
  48. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44. doi: 10.1016/j.cmet.2007.11.011 PubMedCrossRefGoogle Scholar
  49. Snijders T et al (2013) Acute dietary protein intake restriction is associated with changes in myostatin expression after a single bout of resistance exercise in healthy young men. J Nutr 144(2):137–145. doi: 10.3945/jn.113.183996 PubMedCrossRefGoogle Scholar
  50. Sousa-Victor P et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321. doi: 10.1038/nature13013 PubMedCrossRefGoogle Scholar
  51. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267:107–114. doi: 10.1006/excr.2001.5252 PubMedCrossRefGoogle Scholar
  52. Urciuolo A et al (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat commun 4:1964. doi: 10.1038/ncomms2964 PubMedCrossRefPubMedCentralGoogle Scholar
  53. Vijayan K, Thompson JL, Norenberg KM, Fitts RH, Riley DA (2001) Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. J Appl Physiol 90:770–776PubMedGoogle Scholar
  54. Vissing K, Andersen JL, Schjerling P (2005) Are exercise-induced genes induced by exercise? FASEB J 19:94–96. doi: 10.1096/fj.04-2084fje PubMedGoogle Scholar
  55. Vissing K, Overgaard K, Nedergaard A, Fredsted A, Schjerling P (2008) Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle. Eur J Appl Physiol 103:323–332. doi: 10.1007/s00421-008-0709-7 PubMedCrossRefGoogle Scholar
  56. Vissing K, McGee SL, Farup J, Kjolhede T, Vendelbo MH, Jessen N (2011) Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports 23(3):355–366. doi: 10.1111/j.1600-0838.2011.01395.x CrossRefGoogle Scholar
  57. Xin L, Hyldahl RD, Chipkin SR, Clarkson PM (2013) A contralateral repeated bout effect attenuates induction of NF-kappaB DNA-binding following eccentric exercise. J Appl Physiol (1985). doi: 10.1152/japplphysiol.00133.2013 Google Scholar
  58. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67. doi: 10.1152/physrev.00043.2011 PubMedCrossRefPubMedCentralGoogle Scholar
  59. Yu JG, Carlsson L, Thornell LE (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol 121:219–227. doi: 10.1007/s00418-004-0625-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jean Farup
    • 1
    Email author
  • Stine Klejs Rahbek
    • 1
  • Inge Skovgaard Knudsen
    • 1
  • Frank de Paoli
    • 2
    • 3
  • Abigail L. Mackey
    • 4
    • 5
  • Kristian Vissing
    • 1
  1. 1.Section of Sport Science, Department of Public HealthAarhus UniversityAarhusDenmark
  2. 2.Department of BiomedicineAarhus UniversityAarhusDenmark
  3. 3.Department of RheumatologyAarhus University HospitalAarhusDenmark
  4. 4.Department of Orthopaedic Surgery M, Institute of Sports Medicine, Bispebjerg HospitalUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Centre for Healthy AgeingUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations