Amino Acids

, Volume 47, Issue 10, pp 2143–2154 | Cite as

Glutamine and intestinal barrier function

  • Bin Wang
  • Guoyao Wu
  • Zhigang Zhou
  • Zhaolai Dai
  • Yuli Sun
  • Yun Ji
  • Wei Li
  • Weiwei Wang
  • Chuang Liu
  • Feng Han
  • Zhenlong WuEmail author
Review Article


The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.


Glutamine Intestinal barrier function Nutrition 



Neutral amino acid transporter type 2


Adenosine triphosphate


Buthionine sulfoximine




Essential amino acids


Eukaryotic translation initiation factor 4E-binding protein-1


Eukaryotic translation initiation factor 4E


Forkhead box O transcription factor


GlutaminaseGALT gut-associated lymphatic tissue


Glutamate cysteine ligase


Glutamine synthetase




Glutathione synthetase


Glutathione disulfide


γ-Glutamyl transpeptidase




Inhibitor of NF-κB




Intrauterine growth restriction


Mitogen-activated protein kinases


Methionine sulfoximine


Mammalian target of rapamycin


mTOR complex


Reduced form of nicotinamide adenine dinucleotide


Reduced form of nicotinamide adenine dinucleotide phosphate


Nuclear factor-κB


Nitric oxide


NO synthase


p70 Ribosomal protein S6 kinase


Phosphatidylinositol 3-kinase


Protein kinase B


Pentose phosphate pathway


Ras homologue enriched in brain


Reactive oxygen species


Receptor tyrosine kinase


Sodium coupled neutral amino acid transporter 2


Tricarboxylic acid cycle


Tumor necrosis factor-alpha


Total parenteral nutrition


Reduced thioredoxin


Oxidized thioredoxin


Tuberous sclerosis complex


Zonula occludens protein 1



This work was supported by National Key Basic Research Program (2013CB127302), the Natural Science Foundation of China (31172217, 31272450, 31301979, and 31272451), the Chinese Universities Scientific Fund (2013RC002), the Program for New Century Excellent Talents in University (NCET-12-0522), and the Program for Beijing Municipal Excellent Talents, and Texas A&M AgriLife Research (H-8200).

Conflict of interest

The authors declare no conflicts of interest.


  1. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144PubMedCrossRefGoogle Scholar
  2. Alverdy JC (1990) Effects of glutamine-supplemented diets on immunology of the gut. JPEN J Parenter Enteral Nutr 14:109S–113SPubMedCrossRefGoogle Scholar
  3. Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185–190PubMedGoogle Scholar
  4. Arrieta MC, Bistritz L, Meddings JB (2006) Alterations in intestinal permeability. Gut 55:1512–1520PubMedGoogle Scholar
  5. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420PubMedCrossRefGoogle Scholar
  6. Avissar NE, Sax HC, Toia L (2008) In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3 K, and Rho-dependent. Dig Dis Sci 53:2113–2125PubMedCrossRefGoogle Scholar
  7. Bach SP, Renehan AG, Potten CS (2000) Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21:469–476PubMedCrossRefGoogle Scholar
  8. Banan A, Keshavarzian A, Zhang L, Shaikh M, Forsyth CB, Tang Y et al (2007) NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol 41:447–460PubMedCrossRefGoogle Scholar
  9. Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–1864PubMedCentralPubMedCrossRefGoogle Scholar
  10. Basuroy S, Sheth P, Mansbach CM, Rao RK (2005) Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and l-glutamine. Am J Physiol Gastrointest Liver Physiol 289:G367–G375PubMedCrossRefGoogle Scholar
  11. Booth C, Evans GS, Potten CS (1995) Growth factor regulation of proliferation in primary cultures of small intestinal epithelium. In Vitro Cell Dev Biol Anim 31:234–243PubMedCrossRefGoogle Scholar
  12. Buchman AL, Moukarzel AA, Bhuta S, Belle M, Ament ME, Eckhert CD et al (1995) Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN J Parenter Enteral Nutr 19:453–460PubMedCrossRefGoogle Scholar
  13. Burke DJ, Alverdy JC, Aoys E, Moss GS (1989) Glutamine-supplemented total parenteral nutrition improves gut immune function. Arch Surg 124:1396–1399PubMedCrossRefGoogle Scholar
  14. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24:503–512PubMedCrossRefGoogle Scholar
  15. Campbell JM, Crenshaw JD, Polo J (2013) The biological stress of early weaned piglets. J Anim Sci Biotechnol 4:19PubMedCentralPubMedCrossRefGoogle Scholar
  16. Carneiro BA, Fujii J, Brito GA, Alcantara C, Oria RB, Lima AA et al (2006) Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect Immun 74:81–87PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chen K, Okuma T, Okamura K, Torigoe Y, Miyauchi Y (1994) Glutamine-supplemented parenteral nutrition improves gut mucosa integrity and function in endotoxemic rats. JPEN J Parenter Enteral Nutr 18:167–171PubMedCrossRefGoogle Scholar
  18. Chen Y, Li DF, Dai ZL et al (2014) L-methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning pigs. Amino Acids 46:1131–1142PubMedCrossRefGoogle Scholar
  19. Circu ML, Aw TY (2011) Redox biology of the intestine. Free Radical Res 45:1245–1266CrossRefGoogle Scholar
  20. Circu ML, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823:1767–1777PubMedCentralPubMedCrossRefGoogle Scholar
  21. Clark EC, Patel SD, Chadwick PR, Warhurst G, Curry A, Carlson GL (2003) Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut 52:224–230PubMedCentralPubMedCrossRefGoogle Scholar
  22. Coeffier M, Le Pessot F, Leplingard A, Marion R, Lerebours E, Ducrotte P et al (2002) Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa. J Nutr 132:2570–2573PubMedGoogle Scholar
  23. Crespo I, San-Miguel B, Prause C, Marroni N, Cuevas MJ, Gonzalez-Gallego J et al (2012) Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 7:e50407PubMedCentralPubMedCrossRefGoogle Scholar
  24. Crowe SE, Perdue MH (1992) Functional abnormalities in the intestine associated with mucosal mast cell activation. Reg Immunol 4:113–117PubMedGoogle Scholar
  25. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC et al (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401PubMedCrossRefGoogle Scholar
  26. Dai ZL, Zhang J, Wu G, Zhu WY (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215PubMedCrossRefGoogle Scholar
  27. Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608PubMedCrossRefGoogle Scholar
  28. Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512PubMedCrossRefGoogle Scholar
  29. de Santa Barbara P, van den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60:1322–1332PubMedCentralPubMedCrossRefGoogle Scholar
  30. DeMarco VG, Li N, Thomas J, West CM, Neu J (2003) Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J Nutr 133:2176–2179PubMedGoogle Scholar
  31. Deniel N, Marion-Letellier R, Charlionet R, Tron F, Leprince J, Vaudry H et al (2007) Glutamine regulates the human epithelial intestinal HCT-8 cell proteome under apoptotic conditions. Mol Cell Proteomics 6:1671–1679PubMedCrossRefGoogle Scholar
  32. D’Inca R, Kloareg M, Gras-Le Guen C, Le Huerou-Luron I (2010) Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. J Nutr 140:925–931PubMedCrossRefGoogle Scholar
  33. D’Inca R, Gras-Le Guen C, Che L, Sangild PT, Le Huerou-Luron I (2011) Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99:208–216PubMedCrossRefGoogle Scholar
  34. Evans ME, Jones DP, Ziegler TR (2003) Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J Nutr 133:3065–3071PubMedGoogle Scholar
  35. Evans ME, Jones DP, Ziegler TR (2005) Glutamine inhibits cytokine-induced apoptosis in human colonic epithelial cells via the pyrimidine pathway. Am J Physiol Gastrointest Liver Physiol 289:G388–G396PubMedCrossRefGoogle Scholar
  36. Farhadi A, Banan A, Fields J, Keshavarzian A (2003) Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 18:479–497PubMedCrossRefGoogle Scholar
  37. Findley MK, Koval M (2009) Regulation and roles for claudin-family tight junction proteins. IUBMB Life 61:431–437PubMedCentralPubMedCrossRefGoogle Scholar
  38. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314PubMedCrossRefGoogle Scholar
  39. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188PubMedCrossRefGoogle Scholar
  40. Gareau MG, Jury J, Perdue MH (2007) Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 293:G198–G203PubMedCrossRefGoogle Scholar
  41. Grant JP, Snyder PJ (1988) Use of l-glutamine in total parenteral nutrition. J Surg Res 44:506–513PubMedCrossRefGoogle Scholar
  42. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20 (quiz 21-22)PubMedCentralPubMedCrossRefGoogle Scholar
  43. Groschwitz KR, Ahrens R, Osterfeld H, Gurish MF, Han X, Abrink M et al (2009) Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc Natl Acad Sci 106:22381–22386PubMedCentralPubMedCrossRefGoogle Scholar
  44. Han X, Ren X, Jurickova I, Groschwitz K, Pasternak BA, Xu H et al (2009) Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut 58:49–58PubMedCentralPubMedCrossRefGoogle Scholar
  45. Haynes TE, Li P, Li X, Shimotori K, Sato H, Flynn NE et al (2009) l-Glutamine or L-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142PubMedCrossRefGoogle Scholar
  46. Hou Y, Yao K, Wang L, Ding B, Fu D, Liu Y et al (2011) Effects of alpha-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br J Nutr 106:357–363PubMedCrossRefGoogle Scholar
  47. Jacobi SK, Odle J (2012) Nutritional factors influencing intestinal health of the neonate. Adv Nutr 3:687–696PubMedCentralPubMedCrossRefGoogle Scholar
  48. Jiang ZY, Sun LH, Lin YC, Ma XY, Zheng CT, Zhou GL et al (2009) Effects of dietary glycyl-glutamine on growth performance, small intestinal integrity, and immune responses of weaning piglets challenged with lipopolysaccharide. J Anim Sci 87:4050–4056PubMedCrossRefGoogle Scholar
  49. Kern JC, Kehrer JP (2005) Free radicals and apoptosis: relationships with glutathione, thioredoxin, and the BCL family of proteins. Front Biosci 10:1727–1738PubMedCrossRefGoogle Scholar
  50. Kourtis N, Tavernarakis N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30PubMedCrossRefGoogle Scholar
  51. Larson SD, Li J, Chung DH, Evers BM (2007) Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am J Physiol Gastrointest Liver Physiol 293:G1262–G1271PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lesueur C, Bole-Feysot C, Bekri S, Husson A, Lavoinne A, Brasse-Lagnel C (2012) Glutamine induces nuclear degradation of the NF-kappaB p65 subunit in Caco-2/TC7 cells. Biochimie 94:806–815PubMedCrossRefGoogle Scholar
  53. Li N, Neu J (2009) Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr 139:710–714PubMedCentralPubMedCrossRefGoogle Scholar
  54. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar
  55. Li N, Lewis P, Samuelson D, Liboni K, Neu J (2004) Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287:G726–G733PubMedCrossRefGoogle Scholar
  56. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  57. Li P, Knabe DA, Kim SW et al (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509PubMedCentralPubMedCrossRefGoogle Scholar
  58. Liboni KC, Li N, Scumpia PO, Neu J (2005) Glutamine modulates LPS-induced IL-8 production through IkappaB/NF-kappaB in human fetal and adult intestinal epithelium. J Nutr 135:245–251PubMedGoogle Scholar
  59. Marc Rhoads J, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122PubMedCrossRefGoogle Scholar
  60. Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Marquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458PubMedCrossRefGoogle Scholar
  61. Mates JM, Segura JA, Alonso FJ, Marquez J (2006) Pathways from glutamine to apoptosis. Front Biosci 11:3164–3180PubMedCrossRefGoogle Scholar
  62. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4:225–236PubMedCrossRefGoogle Scholar
  63. Meadows AL, Kong B, Berdichevsky M, Roy S, Rosiva R, Blanch HW et al (2008) Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells. Biotechnol Prog 24:334–341PubMedCrossRefGoogle Scholar
  64. Menard S, Cerf-Bensussan N, Heyman M (2010) Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3:247–259PubMedCrossRefGoogle Scholar
  65. Mestecky J, Russell MW, Jackson S, Brown TA (1986) The human IgA system: a reassessment. Clin Immunol Immunopathol 40:105–114PubMedCrossRefGoogle Scholar
  66. Moeser AJ, Ryan KA, Nighot PK, Blikslager AT (2007) Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am J Physiol Gastrointest Liver Physiol 293:G413–G421PubMedCrossRefGoogle Scholar
  67. Mondello S, Galuppo M, Mazzon E, Domenico I, Mondello P, Carmela A et al (2010) Glutamine treatment attenuates the development of ischaemia/reperfusion injury of the gut. Eur J Pharmacol 643:304–315PubMedCrossRefGoogle Scholar
  68. Musch MW, Hayden D, Sugi K, Straus D, Chang EB (1998) Cell-specific induction of hsp72-mediated protection by glutamine against oxidant injury in IEC18 cells. Proc Assoc Am Physicians 110:136–139PubMedGoogle Scholar
  69. Neu J, DeMarco V, Weiss M (1999) Glutamine supplementation in low-birth-weight infants: mechanisms of action. JPEN J Parenter Enteral Nutr 23:S49–S51PubMedCrossRefGoogle Scholar
  70. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534PubMedCentralPubMedCrossRefGoogle Scholar
  71. Noth R, Hasler R, Stuber E, Ellrichmann M, Schafer H, Geismann C et al (2013) Oral glutamine supplementation improves intestinal permeability dysfunction in a murine acute graft-vs.-host disease model. Am J Physiol Gastrointest Liver Physiol 304:G646–G654PubMedCrossRefGoogle Scholar
  72. Papaconstantinou HT, Hwang KO, Rajaraman S, Hellmich MR, Townsend CM Jr, Ko TC (1998) Glutamine deprivation induces apoptosis in intestinal epithelial cells. Surgery 124:152–159 (discussion 159-160)PubMedCrossRefGoogle Scholar
  73. Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788PubMedCrossRefGoogle Scholar
  74. Pasparakis M (2012) Role of NF-kappaB in epithelial biology. Immunol Rev 246:346–358PubMedCrossRefGoogle Scholar
  75. Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT et al (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 85:1139–1162PubMedCrossRefGoogle Scholar
  76. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909PubMedCrossRefGoogle Scholar
  77. Ramsay DB, Stephen S, Borum M, Voltaggio L, Doman DB (2010) Mast cells in gastrointestinal disease. Gastroenterol Hepatol (N Y) 6:772–777Google Scholar
  78. Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J et al (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 273:E408–E415PubMedGoogle Scholar
  79. Ren WK, Luo W, Wu MM et al (2013a) Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type 2 porcine circovirus. Amino Acids 45:479–488PubMedCrossRefGoogle Scholar
  80. Ren WK, Liu SP, Chen S et al (2013b) Dietary L-glutamine supplementation increases pasteurella multocida burden and expression of major virulence factors. Amino Acids 45:947–955PubMedCrossRefGoogle Scholar
  81. Rezaei R, Knabe DA, Li XL et al (2011) Enhanced efficiency of milk utilization for growth in surviving low-birth-weight piglets. J Anim Sci Biotechnol 2:73–83Google Scholar
  82. Rezaei R, Wang WW, Wu ZL et al (2013a) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotechnol 4:7PubMedCentralPubMedCrossRefGoogle Scholar
  83. Rezaei R, Knabe DA, Tekwe CD et al (2013b) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923PubMedCrossRefGoogle Scholar
  84. Rhoads M (1999) Glutamine signaling in intestinal cells. JPEN J Parenter Enteral Nutr 23:S38–S40PubMedCrossRefGoogle Scholar
  85. Rhoads JM, Argenzio RA, Chen W, Rippe RA, Westwick JK, Cox AD et al (1997) l-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272:G943–G953PubMedGoogle Scholar
  86. Ropeleski MJ, Riehm J, Baer KA, Musch MW, Chang EB (2005) Anti-apoptotic effects of l-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology 129:170–184PubMedCrossRefGoogle Scholar
  87. Ruth MR, Field CJ (2013) the immune modifying effects of the gut-associated lymphoid tissue. J Anim Sci Biotechnol 4:27PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB (2009) Glutamine increases autophagy under basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136:924–932PubMedCentralPubMedCrossRefGoogle Scholar
  89. Sandri M (2012) FOXOphagy path to inducing stress resistance and cell survival. Nat Cell Biol 14:786–788PubMedCrossRefGoogle Scholar
  90. Scheppach W, Dusel G, Kuhn T, Loges C, Karch H, Bartram HP et al (1996) Effect of l-glutamine and n-butyrate on the restitution of rat colonic mucosa after acid induced injury. Gut 38:878–885PubMedCentralPubMedCrossRefGoogle Scholar
  91. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228PubMedCrossRefGoogle Scholar
  92. Schroder J, Wardelmann E, Winkler W, Fandrich F, Schweizer E, Schroeder P (1995) Glutamine dipeptide-supplemented parenteral nutrition reverses gut atrophy, disaccharidase enzyme activity, and absorption in rats. JPEN J Parenter Enteral Nutr 19:502–506PubMedCrossRefGoogle Scholar
  93. Seth A, Basuroy S, Sheth P, Rao RK (2004) l-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol 287:G510–G517PubMedCrossRefGoogle Scholar
  94. Shaker A, Rubin DC (2010) Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 156:180–187PubMedCentralPubMedCrossRefGoogle Scholar
  95. Sheard NF, Walker WA (1988) The role of breast milk in the development of the gastrointestinal tract. Nutr Rev 46:1–8PubMedCrossRefGoogle Scholar
  96. Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE et al (2010) Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 298:G352–G363PubMedCentralPubMedCrossRefGoogle Scholar
  97. Soderholm JD, Yates DA, Gareau MG, Yang PC, MacQueen G, Perdue MH (2002) Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol 283:G1257–G1263PubMedCrossRefGoogle Scholar
  98. Souba WW, Klimberg VS, Hautamaki RD, Mendenhall WH, Bova FC, Howard RJ et al (1990) Oral glutamine reduces bacterial translocation following abdominal radiation. J Surg Res 48:1–5PubMedCrossRefGoogle Scholar
  99. Spitz J, Yuhan R, Koutsouris A, Blatt C, Alverdy J, Hecht G (1995) Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol 268:G374–G379PubMedGoogle Scholar
  100. Takayama C, Mukaizawa F, Fujita T, Ogawara K, Higaki K, Kimura T (2009) Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer. J Pharm Sci 98:4629–4638PubMedCrossRefGoogle Scholar
  101. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776PubMedCrossRefGoogle Scholar
  102. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M et al (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14:829–837PubMedCrossRefGoogle Scholar
  103. Veldhoen M, Brucklacher-Waldert V (2012) Dietary influences on intestinal immunity. Nat Rev Immunol 12:696–708PubMedCrossRefGoogle Scholar
  104. Wang J, Chen L, Li P, Li X, Zhou H, Wang F et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032PubMedCrossRefGoogle Scholar
  105. Wijtten PJ, van der Meulen J, Verstegen MW (2011) Intestinal barrier function and absorption in pigs after weaning: a review. Br J Nutr 105:967–981PubMedCrossRefGoogle Scholar
  106. Wischmeyer PE (2002) Glutamine and heat shock protein expression. Nutrition 18:225–228PubMedCrossRefGoogle Scholar
  107. Wu G (1996) Effects of concanavalin A and phorbol myristate acetate on glutamine metabolism and proliferation of porcine intestinal intraepithelial lymphocytes. Comp Biochem Physiol A Physiol 114:363–368PubMedCrossRefGoogle Scholar
  108. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252PubMedGoogle Scholar
  109. Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411PubMedCrossRefGoogle Scholar
  110. Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paraddigm shift in protein nutrition. J Anim Sci Biotechnol 5:34PubMedCentralPubMedCrossRefGoogle Scholar
  111. Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424PubMedGoogle Scholar
  112. Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 268:R334–R342PubMedGoogle Scholar
  113. Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584PubMedGoogle Scholar
  114. Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE et al (2011) Triennial Growth Symposium: important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030PubMedCrossRefGoogle Scholar
  115. Wu G, Wu Z, Dai Z, Yang Y, Wang W, Liu C et al (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–1113PubMedCrossRefGoogle Scholar
  116. Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417PubMedCrossRefGoogle Scholar
  117. Xi P, Jiang Z, Zheng C, Lin Y, Wu G (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci (Landmark Ed) 16:578–597CrossRefGoogle Scholar
  118. Xi P, Jiang Z, Dai Z, Li X, Yao K, Zheng C et al (2012) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23:1012–1017PubMedCrossRefGoogle Scholar
  119. Yang Y, Sun F, Zhang C et al (2013) Hypoxia promotes cell proliferation by modulating E2F1 in chicken pulmonary arterial smooth muscle cells. J Anim Sci Biotechnol 4:28PubMedCentralPubMedCrossRefGoogle Scholar
  120. Yao K, Yin Y, Li X, Xi P, Wang J, Lei J et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500PubMedCrossRefGoogle Scholar
  121. Yi GF, Carroll JA, Allee GL, Gaines AM, Kendall DC, Usry JL et al (2005) Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+ -challenged weaned pigs. J Anim Sci 83:634–643PubMedGoogle Scholar
  122. Zhang SH, Qiao SY, Ren M et al (2013) Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191–1205PubMedCrossRefGoogle Scholar
  123. Ziegler TR (1994) Glutamine is essential for epidermal growth factor-stimulated intestinal cell proliferation. JPEN J Parenter Enteral Nutr 18:84–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Bin Wang
    • 1
  • Guoyao Wu
    • 1
    • 2
  • Zhigang Zhou
    • 3
  • Zhaolai Dai
    • 1
  • Yuli Sun
    • 1
  • Yun Ji
    • 1
  • Wei Li
    • 1
  • Weiwei Wang
    • 1
  • Chuang Liu
    • 1
  • Feng Han
    • 1
  • Zhenlong Wu
    • 1
    Email author
  1. 1.State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Department of Animal ScienceTexas A&M UniversityCollege StationUSA
  3. 3.Key Laboratory for Feed Biotechnology of the Ministry of AgricultureFeed Research Institute, Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations