Skip to main content
Log in

Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux into l-lysine biosynthetic pathway

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and l-lysine production drastically improved. Moreover, increasing the flux through l-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and l-methionine biosynthesis, further improved l-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the l-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45 % by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., l-threonine, l-methionine and l-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce l-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The l-lysine productivity was 2.73 g l−1 h−1 and the α was 47.06 % after 48 h. However, the attenuation of MurE was not beneficial to increase the l-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through l-lysine biosynthetic pathway and DCW are beneficial to improve l-lysine production in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 138(2):99–109. doi:10.1016/j.jbiotec.2007.05.026

    Article  Google Scholar 

  • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168. doi:10.1016/j.ymben.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40. doi:10.1186/gb-2012-13-5-r40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76(3):615–623. doi:10.1007/s00253-007-0904-1

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Hans S, Bathe B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi:10.1128/AEM.01844-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Rappert S, Zeng AP (2013) Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor l-lysine. ACS Synth Biol. doi:10.1021/sb400133g

    PubMed Central  Google Scholar 

  • Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29(1):11–23. doi:10.1016/j.biotechadv.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  • Fiuza M, Canova MJ, Patin D, Letek M, Zanella-Cléon I, Becchi M, Mateos LM, Mengin-Lecreulx D, Molle V, Gil JA (2008) The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum. J Biol Chem 283(52):36553–36563. doi:10.1074/jbc.M807175200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia M, Myouga F, Takechi K, Sato H, Nabeshima K, Nagata N, Takio S, Shinozaki K, Takano H (2008) An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant J 53(6):924–934. doi:10.1111/j.1365-313X.2007.03379.x

    Article  CAS  PubMed  Google Scholar 

  • Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7(4):291–301. doi:10.1016/j.ymben.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M (2013) Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79(4):1250–1257. doi:10.1128/AEM.02806-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou XH, Chen XD, Zhang Y, Qian H, Zhang WG (2012) (l)-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43(6):2301–2311. doi:10.1007/s00726-012-1308-9

    Article  CAS  PubMed  Google Scholar 

  • Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40(10):1143–1151. doi:10.1007/s10295-013-1306-2

    Article  CAS  PubMed  Google Scholar 

  • Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75(1):47–53. doi:10.1007/s00253-006-0804-9

    Article  CAS  PubMed  Google Scholar 

  • Kelle R, Hermann T, Bathe B (2005) l-lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

    Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149(1–2):24–32. doi:10.1016/j.jbiotec.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  • Martínez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with an NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359. doi:10.1016/j.ymben.2008.09.001

    Article  PubMed  Google Scholar 

  • Morbach S, Sahm H, Eggeling L (1996) l-isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62(12):4345–4351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakotte S, Schaffer S, Bohringer M, Durre P (1998) Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 50(5):564–567. doi:10.1007/s002530051335

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58(2):217–223. doi:10.1007/s00253-001-0883-6

    Article  CAS  PubMed  Google Scholar 

  • Osman K, Evangelopooulos D, Basavannacharya C, Gupta A, McHugh TD, Bhakta S, Gibbons S (2012) An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int J Antimicrob Aging 39(2):124–129. doi:10.1016/j.ijantimicag.2011.09.018

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiol 144(Pt4):915–927. doi:10.1099/00221287-144-4-915

    Article  CAS  Google Scholar 

  • Pisabarro A, Malumbes M, Mateos LM, Oguiza JA, Martín JF (1993) A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J Bacteriol 175(9):2743–2749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381(9–10):899–910. doi:10.1515/BC.2000.111

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DV (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gene 145(1):69–73. doi:10.1016/0378-1119(94)90324-7

    Article  PubMed  Google Scholar 

  • Takeno S, Murata R, Kobagashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 76(10):7154–7160. doi:10.1016/j.ymben.2008.09.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Restá ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545. doi:10.1007/s002530051557

    Article  Google Scholar 

  • Wendisch VF (2007) Amino acid biosynthesis ~ pathways, regulation and metabolic engineering. In: Wittmann C, Becker J (eds) The l-lysine story: from metabolic pathways to industrial production. Springer, Berlin Heidelberg, pp 39–70

    Google Scholar 

  • Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang XY (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80(1):86–92. doi:10.1016/j.mimet.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Xu JZ, Han M, Zhang JL, Guo YF, Qian H, Zhang WG (2013a) Improvement of l-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J Chem Technol Biotechnol. doi:10.1002/jctb.4278

    Google Scholar 

  • Xu JZ, Zhang JL, Guo YF, Zai YG, Zhang WG (2013b) Inprovement of cell growth and production of l-lysine by genetically modified C. glutamicum during growth on molasses. J Ind Microbiol Biotechnol 40(12):1423–1432. doi:10.1007/s10295-013-1329-8

    Article  CAS  PubMed  Google Scholar 

  • Xu JZ, Xia XH, Zhang JL, Guo YF, Qian H, Zhang WG (2014a) A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers. Plasmid 72(1):9–17. doi:10.1016/j.plasmid.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Xu JZ, Zhang JL, Guo YF, Zhang WG (2014b) Genetically modifying aspartate aminotransferase and aspartate ammonia-lyase affects metabolite accumulation in L-lysine producing strain derived from Corynebacterium glutamicum ATCC13032 (unpblished data)

  • Zhang WW, Jiang WH, Zhao GP, Yang YL, Chiao JS (1999) Sequence analysis and expression of the aspartokinase and aspartate semialdehyde dehydrogenase operon from rifamycin SV-producing Amycolatopsis mediterranei. Gene 237(2):413–419. doi:10.1016/S0378-1119(99)00307-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program of Chinese 863 National High-Tech Research and Development Plan Project (No. 2008AA02Z212) and by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Han, M., Zhang, J. et al. Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux into l-lysine biosynthetic pathway. Amino Acids 46, 2165–2175 (2014). https://doi.org/10.1007/s00726-014-1768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1768-1

Keywords

Navigation