Abstract
There is little information about the effects of caffeine intake on female team-sport performance. The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to improve physical performance in female soccer players during a simulated game. A double-blind, placebo controlled and randomized experimental design was used in this investigation. In two different sessions, 18 women soccer players ingested 3 mg of caffeine/kg in the form of an energy drink or an identical drink with no caffeine content (placebo). After 60 min, they performed a countermovement jump (CMJ) and a 7 × 30 m sprint test followed by a simulated soccer match (2 × 40 min). Individual running distance and speed were measured using GPS devices. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the CMJ height (26.6 ± 4.0 vs 27.4 ± 3.8 cm; P < 0.05) and the average peak running speed during the sprint test (24.2 ± 1.6 vs 24.5 ± 1.7 km/h; P < 0.05). During the simulated match, the energy drink increased the total running distance (6,631 ± 1,618 vs 7,087 ± 1,501 m; P < 0.05), the number of sprints bouts (16 ± 9 vs 21 ± 13; P < 0.05) and the running distance covered at >18 km/h (161 ± 99 vs 216 ± 103 m; P < 0.05). The ingestion of the energy drink did not affect the prevalence of negative side effects after the game. An energy drink with a dose equivalent to 3 mg of caffeine/kg might be an effective ergogenic aid to improve physical performance in female soccer players.
This is a preview of subscription content, access via your institution.

References
Alford C, Cox H, Wescott R (2001) The effects of red bull energy drink on human performance and mood. Amino Acids 21(2):139–150
Alsunni AA, Badar A (2011) Energy drinks consumption pattern, perceived benefits and associated adverse effects amongst students of University of Dammam, Saudi Arabia. J Ayub Med Coll Abbottabad JAMC 23(3):3–9
Andersson HA, Randers MB, Heiner-Moller A, Krustrup P, Mohr M (2010) Elite female soccer players perform more high-intensity running when playing in international games compared with domestic league games. J Strength Cond Res 24(4):912–919. doi:10.1519/JSC.0b013e3181d09f21
Astorino TA, Matera AJ, Basinger J, Evans M, Schurman T, Marquez R (2012) Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 42(5):1803–1808. doi:10.1007/s00726-011-0900-8
Bangsbo J (1994) The physiology of soccer—with special reference to intense intermittent exercise. Acta Physiol Scand Suppl 619:1–155
Bangsbo J, Iaia FM, Krustrup P (2007) Metabolic response and fatigue in soccer. Int J Sports Physiol Perform 2(2):111–127
Barbero-Álvarez JC, Coutts A, Granda J, Barbero-Álvarez V, Castagna C (2009) The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J Sci Med Sport 13(2):232–235
Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, Malek MH (2006) The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res 20(3):506–510. doi:10.1519/18285.1
Bishop D (2010) Dietary supplements and team-sport performance. Sports Med 40(12):995–1017. doi:10.2165/11536870-000000000-00000
Bishop D, Girard O, Mendez-Villanueva A (2011) Repeated-sprint ability—part II: recommendations for training. Sports Med 41(9):741–756. doi:10.2165/11590560-000000000-00000
Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33(6):1319–1334
Burke LM, Loucks AB, Broad N (2006) Energy and carbohydrate for training and recovery. J Sports Sci 24(7):675–685. doi:10.1080/02640410500482602
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB (2013) International society of sports nutrition position stand: energy drinks. J Int Soc Sports Nutr 10(1):1. doi:10.1186/1550-2783-10-1
Carr A, Dawson B, Schneiker K, Goodman C, Lay B (2008) Effect of caffeine supplementation on repeated sprint running performance. J Sports Med Phys Fit 48(4):472–478
Castagna C, D’Ottavio S, Abt G (2003) Activity profile of young soccer players during actual match play. J Strength Cond Res 17(4):775–780
Clauson KA, Shields KM, McQueen CE, Persad N (2008) Safety issues associated with commercially available energy drinks. J Am Pharm Assoc 48(3):e55–63 (quiz e64–57). doi:10.1331/JAPhA.2008.07055
Coso J, Estevez E, Mora-Rodriguez R (2008) Caffeine effects on short-term performance during prolonged exercise in the heat. Med Sci Sports Exerc 40(4):744–751
Coso J, Estevez E, Mora-Rodriguez R (2009) Caffeine during exercise in the heat: thermoregulation and fluid–electrolyte balance. Med Sci Sports Exerc 41(1):164–173
Coso JD, Muñoz G, Muñoz-Guerra J (2011) Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab 36(4):555–561
Costill DL, Dalsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10(3):155–158
Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284(2):R399–404. doi:10.1152/ajpregu.00386.2002
Del Coso J, Munoz-Fernandez VE, Munoz G, Fernandez-Elias VE, Ortega JF, Hamouti N, Barbero JC, Munoz-Guerra J (2012a) Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS One 7(2):e31380. doi:10.1371/journal.pone.0031380PONE-D-11-20846
Del Coso J, Salinero JJ, Gonzalez-Millan C, Abian-Vicen J, Perez-Gonzalez B (2012b) Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr 9(1):21. doi:10.1186/1550-2783-9-21
Del Coso J, Portillo J, Munoz G, Abian-Vicen J, Gonzalez-Millan C, Munoz-Guerra J (2013a) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44(6):1511–1519. doi:10.1007/s00726-013-1473-5
Del Coso J, Ramirez JA, Muñoz G, Portillo J, Gonzalez-Millan C, Muñoz V, Barbero JC, Muñoz-Guerra J (2013b) Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl Physiol Nutr Metab 38(4):368–374
Doherty M, Smith PM (2004) Effects of caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab 14(6):626–646
Duncan MJ, Lyons M, Hankey J (2009) Placebo effects of caffeine on short-term resistance exercise to failure. Int J Sports Physiol Perform 4(2):244–253
Federation Internationale de Football Association (2006) Big count. FIFA Survey
Froiland K, Koszewski W, Hingst J, Kopecky L (2004) Nutritional supplement use among college athletes and their sources of information. Int J Sport Nutr Exerc Metab 14(1):104–120
Gant N, Ali A, Foskett A (2010) The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sport Nutr Exerc Metab 20(3):191–197
Glaister M, Howatson G, Abraham CS, Lockey RA, Goodwin JE, Foley P, McInnes G (2008) Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc 40(10):1835–1840
Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA (2000) Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 529(Pt 3):837–847
Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, Laurent CM (2007) Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform 2(3):250–259
Hoffman JR (2010) Caffeine and energy drinks. Strength Cond J 32(1):15–20
Hudson GM, Green JM, Bishop PA, Richardson MT (2008) Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res 22(6):1950–1957. doi:10.1519/JSC.0b013e31818219cb
Ingebrigtsen J, Bendiksen M, Randers MB, Castagna C, Krustrup P, Holtermann A (2012) Yo-Yo IR2 testing of elite and sub-elite soccer players: performance, heart rate response and correlations to other interval tests. J Sports Sci 30(13):1337–1345. doi:10.1080/02640414.2012.711484
Kristiansen M, Levy-Milne R, Barr S, Flint A (2005) Dietary supplement use by varsity athletes at a Canadian university. Int J Sport Nutr Exerc Metab 15(2):195–210
Krustrup P, Mohr M, Ellingsgaard H, Bangsbo J (2005) Physical demands during an elite female soccer game: importance of training status. Med Sci Sports Exerc 37(7):1242–1248
Lee CL, Lin JC, Cheng CF (2011) Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. Eur J Appl Physiol 111(8):1669–1677. doi:10.1007/s00421-010-1792-0
Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562
Mohr M, Krustrup P, Bangsbo J (2003) Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 21(7):519–528. doi:10.1080/0264041031000071182
Mohr M, Krustrup P, Andersson H, Kirkendal D, Bangsbo J (2008) Match activities of elite women soccer players at different performance levels. J Strength Cond Res 22(2):341–349. doi:10.1519/JSC.0b013e318165fef6
Pontifex KJ, Wallman KE, Dawson BT, Goodman C (2010) Effects of caffeine on repeated sprint ability, reactive agility time, sleep and next day performance. J Sports Med Phys Fit 50(4):455–464
Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri FM (2007) Variation in top level soccer match performance. Int J Sports Med 28(12):1018–1024. doi:10.1055/s-2007-965158
Reed JL, De Souza MJ, Williams NI (2012) Changes in energy availability across the season in Division I female soccer players. J Sports Sci. doi:10.1080/02640414.2012.733019
Roberts SP, Stokes KA, Trewartha G, Doyle J, Hogben P, Thompson D (2010) Effects of carbohydrate and caffeine ingestion on performance during a rugby union simulation protocol. J Sports Sci 28(8):833–842. doi:10.1080/02640414.2010.484069
Schneiker KT, Bishop D, Dawson B, Hackett LP (2006) Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc 38(3):578–585. doi:10.1249/01.mss.0000188449.18968.62
Stolen T, Chamari K, Castagna C, Wisloff U (2005) Physiology of soccer: an update. Sports Med 35(6):501–536
Stuart GR, Hopkins WG, Cook C, Cairns SP (2005) Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc 37(11):1998–2005
Tarnopolsky M, Cupido C (2000) Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol 89(5):1719–1724
Vescovi JD (2012) Sprint profile of professional female soccer players during competitive matches: female Athletes in Motion (FAiM) study. J Sports Sci 30(12):1259–1265. doi:10.1080/02640414.2012.701760
Acknowledgments
The authors wish to thank the subjects for their invaluable contribution to the study. We also want to thank to Blanca Crespo for helping us to recruit volunteers for this study. The study was supported by a grant from Camilo Jose Cela University.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lara, B., Gonzalez-Millán, C., Salinero, J.J. et al. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46, 1385–1392 (2014). https://doi.org/10.1007/s00726-014-1709-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-014-1709-z