Abstract
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- AcOH:
-
Acetic acid
- CSA:
-
Camphorsulfonic acid
- CSPs:
-
Chiral stationary phases
- DCM:
-
Dichloromethane
- ESA:
-
Ethanesulfonic acid
- EtOH:
-
Ethanol
- MeOH:
-
Methanol
- MSA:
-
Methanesulfonic acid
- NP:
-
Normal-phase
- PI:
-
Polar-ionic
- PO:
-
Polar-organic
- SAX:
-
Strong anion exchange
- TFA:
-
Trifluoroacetic acid
References
Árki A, Tourwé D, Solymár M, Fülöp F, Armstrong DW, Péter A (2004) High-performance liquid chromatographic separation of stereoisomers of β-amino acids and a comparison of separation efficiencies on Chirobiotic T and TAG Columns. Chromatographia 60(1 suppl):S43–S54
Armstrong A, Bhonoah Y, White AJP (2009) Constrained β-proline analogues in organocatalytic aldol reactions: the influence of acid geometry. J Org Chem 74(14):5041–5048
Beesley TE, Lee JT (2007) Method development and optimization of enantioseparations using macrocyclic glycopeptides chiral stationary phases. In: Subramanian G (ed) Chiral separation techniques: a practical approach, 3rd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–28
Berkecz R, Sztojkov-Ivanov A, Ilisz I, Forró E, Fülöp F, Hyun MH, Péter A (2006) High-performance liquid chromatographic enantioseparation of β-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase. J Chromatogr A 1125(1):138–143
Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptide selectors. Chirality 21(1):167–175
Berthod A, Liu Y, Bagwill C, Armstrong DW (1996) Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J Chromatogr A 731(1–2):123–137
Biggs-Houck JE, Davis RL, Wei J, Mercado BQ, Olmstead MM, Tantillo DJ, Shaw JT (2012) Carbon–carbon bond-forming reactions of α-thioaryl carbonyl compounds for the synthesis of complex heterocyclic molecules. J Org Chem 77(1):160–172
Chankvetadze B (2012) Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A 1269:26–51
Chankvetadze B, Yashima E, Okamoto Y (1995) Dimethyl-, dichloro- and chloromethyl-phenylcarbamate derivatives of amylose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A 694(1):101–109
D’Acquarica I, Gasparrini F, Misiti D, Zappia G, Cimarelli C, Palmieri G, Carotti A, Cellamare S, Villani C (2000) Application of a new chiral stationary phase containing the glycopeptide antibiotic A-40,926 in the direct chromatographic resolution of β-amino acids. Tetrahedron Asymmetry 11(11):2375–2385
Fustero S, Mateu N, Simón-Fuentes A, Aceña JL (2010) Diastereoselective intramolecular additions of allyl- and propargylsilanes to iminium ions: synthesis of cyclic and bicyclic quaternary amino acids. Org Lett 12:3014–3017
Hanessian S, Auzzas L (2008) The practice of ring constraint in peptidomimetics using bicyclic and polycyclic amino acids. Acc Chem Res 41(10):1241–1251
Hanessian S, Papeo G, Angiolini M, Fettis K, Beretta M, Munro A (2003) Synthesis of functionally diverse and conformationally constrained polycyclic analogues of proline and prolinol. J Org Chem 68(19):7204–7218
Hanessian S, Papeo G, Fettis K, Therrien E, Phan Viet MT (2004) Synthesis of 310-helix-inducing constrained analogues of l-proline. J Org Chem 69(15):4891–4899
Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216(7):1157–1166
Hyun MH, Cho YJ, Jin JS (2002) Liquid chromatographic direct resolution of β-amino acids on a chiral crown ether stationary phase. J Sep Sci 25(10–11):648–652
Hyun MH, Han SC, Whangbo SH (2003) New ligand exchange chiral stationary phase for the liquid chromatographic resolution of α- and β-amino acids. J Chromatogr A 992(1–2):47–56
Kuhl A, Hahn MG, Dumić M, Mittendorf J (2005) Alicyclic β-amino acids in medicinal chemistry. Amino Acids 29(2):89–100
Li X, Li X, Peng F, Shao Z (2012) Mutually complementary metal- and organocatalysis with collective synthesis: asymmetric conjugate addition of 1,3-carbonyl compounds to nitroenynes and further reactions of the products. Adv Synth Catal 354(14–15):2873–2885
Liu M, Sibi MP (2002) Recent advances in the stereoselective synthesis of β-amino acids. Tetrahedron 58(40):7991–8035
Marini F, Sternativo S (2013) Organocatalytic asymmetric synthesis and use of organoselenium compounds. Synlett 24(1):11–19
Mitsumori S, Zhang H, Cheong PHY, Houk KN, Tanaka F, Barbas CF (2006) Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J Am Chem Soc 128(4):1040–1041
Mitsunuma H, Matsunaga S (2011) Dinuclear Ni2–Schiff base complex-catalyzed asymmetric 1,4-addition of β-keto esters to nitroethylene toward γ2,2-amino acid synthesis. Chem Commun 47(1):469–471
Péter A (2002) Direct high-performance liquid chromatographic enantioseparation of apolar β-amino acids on a quinine-derived chiral anion exchanger stationary phase. J Chromatogr A 955(2):141–150
Péter A, Török G, Armstrong DW (1998) High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 793(2):283–296
Péter A, Árki A, Vékes E, Tourwé D, Lázár L, Fülöp F, Armstrong DW (2004) Direct and indirect high-performance liquid chromatographic enantioseparation of β-amino acids. J Chromatogr A 1031(1–2):171–178
Sardella R, Ianni F, Lisanti A, Marinozzi M, Scorzoni S, Natalini B (2014) The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed Chromatogr 28(1):159–167
Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI (2002) β-Amino acids: versatile peptidomimetics. Curr Med Chem 9(8):811–822
Steiner T, Koellner G (2001) Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J Mol Biol 305(3):535–557
Sternativo S, Walczak O, Battistelli B, Testaferri L, Marini F (2012) Organocatalytic Michael addition of indanone carboxylates to vinyl selenone for the asymmetric synthesis of polycyclic pyrrolidines. Tetrahedron 68(51):10536–10541
Stringham RW, Ye YK (2006) Chiral separation of amines by high-performance liquid chromatography using polysaccharide stationary phases and acidic additives. J Chomatogr A 1101(1–2):86–93
Terakado D, Takano M, Oriyama T (2005) Highly enantioselective (S)-homoprolinecatalyzed Michael addition reactions of ketones to β-nitrostyrenes. Chem Lett 34:962–963
Tesařová E, Bosáková Z, Pacáková V (1999) Comparison of enantioselective separation of N-tert-butyloxycarbonyl amino acids and their non-blocked analogues on teicoplanin-based chiral stationary phase. J Chromatogr A 838(1–2):121–129
Weiner B, Szymański W, Janssen DB, Minnaarda AJ, Feringa BL (2010) Recent advances in the catalytic asymmetric synthesis of β-amino acids. Chem Soc Rev 39(24):1656–1691
Ye YK, Stringham RW (2001) Effect of mobile phase acidic additives on enantioselectivity for phenylalanine analogs. J Chromatogr A 927(1–2):47–52
Ye YK, Lord B, Stringham RW (2002a) Memory effect of mobile phase additives in chiral separations on a Chiralpak AD column. J Chomatogr A 945(1–2):139–146
Ye YK, Lord BS, Yin L, Stringham RW (2002b) Enantioseparation of amino acids on a polysaccharide-based chiral stationary phase. J Chromatogr A 945(1–2):147–159
Yu Z, Liu X, Zhou L, Lin L, Feng X (2009) Bifunctional guanidine via an amino amide skeleton for asymmetric Michael reactions of β-ketoesters with nitroolefins: a concise synthesis of bicyclic β-amino acids. Angew Chem Int Ed 48(28):5195–5198
Zhang H, Mitsumori S, Utsumi N, Imia M, Garcia-Delgado N, Mifsud M, Albertshofer K, Cheong PHY, Houk KN, Tanaka F, Barbas CF (2008) Catalysis of 3-pyrrolidinecarboxylic acid and related pyrrolidine derivatives in enantioselective anti-Mannich-type reactions: importance of the 3-acid group on pyrrolidine for stereocontrol. J Am Chem Soc 130:875–886
Zheng D, Li S, Luo Y, Wu J (2011) An efficient route to tetrahydroindeno[2,1-b]pyrroles via a base-promoted reaction of (E)-2-alkynylphenylchalcone with 2-isocyanoacetate. Org Lett 13(24):6402–6405
Acknowledgments
Fondazione Cassa di Risparmio is gratefully acknowledged for the financial support of the project “Processi ecosostenibili per la produzione e l’analisi di molecule di interesse farmaceutico” (grant 2012.0114.021).
Conflict of interest
The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sardella, R., Ianni, F., Lisanti, A. et al. Direct chromatographic enantioresolution of fully constrained β-amino acids: exploring the use of high-molecular weight chiral selectors. Amino Acids 46, 1235–1242 (2014). https://doi.org/10.1007/s00726-014-1683-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-014-1683-5


