Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs

Abstract

This study tested the hypothesis that dietary l-arginine supplementation confers beneficial effects on growing pigs fed a mold-contaminated diet. The measured variables included: (1) the average daily weight gain and feed:gain ratio; (2) activities of total superoxide dismutase, glutathione peroxidase, diamine oxidase, as well as amino acid and d-lactate concentrations in serum; (3) intestinal morphology; (4) expression of the genes for SLC7A7 (amino acid transporter light chain, y+L system, family 7, member 7), SLC7A1 (cationic amino acid transporter, y+ system, family 7, member 1), SLC1A1 (neuronal/epithelial high affinity glutamate transporter, system XAG, member 1), SLC5A1 (sodium/glucose cotransporter, family 5, member 1) in the ileum and jejunum. Mycotoxins in feedstuffs resulted in an enlarged small intestine mass, oxidative injury in tissues, and reduced growth performance in pigs. Dietary arginine supplementation enhanced (P < 0.05) expression of jejunal SLC7A7 and ileal SLC7A1, in comparison with the control and mycotoxin groups. In addition, supplementing 1 % l-arginine to the mycotoxin-contaminated feed had the following beneficial effects (P < 0.05): (1) alleviating the imbalance of the antioxidant system in the body; (2) ameliorating intestinal abnormalities; and (3) attenuating whole-body growth depression, compared with the mycotoxin group without arginine treatment. Collectively, these results indicate that dietary supplementation with l-arginine exerts a protective role in pigs fed mold-contaminated foods. The findings may have important nutritional implications for humans and other mammals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andretta I, Kipper M, Lehnen CR et al (2012) Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 6:1476–1482

    PubMed  Article  CAS  Google Scholar 

  2. Anggard E (1994) Nitric oxide: mediator, murderer, and medicine. Lancet 343:1199–1206

    PubMed  Article  CAS  Google Scholar 

  3. Applegate TJ, Schatzmayr G, Prickel K et al (2009) Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens. Poult Sci 88:1235–1241

    PubMed  Article  CAS  Google Scholar 

  4. Aravind KL, Patil VS, Devegowda G et al (2003) Efficacy of esterified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers. Poult Sci 82:571–576

    PubMed  Article  CAS  Google Scholar 

  5. Awad WA, Bohm J, Razzazi-Fazeli E et al (2006) Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult Sci 85:974–979

    PubMed  Article  CAS  Google Scholar 

  6. Binder EM (2007) Managing the risk of mycotoxins in modern feed production. Anim Feed Sci Technol 133:149–166

    Article  CAS  Google Scholar 

  7. Binder EM, Tan LM, Chin LJ et al (2007) Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim Feed Sci Technol 137:265–282

    Article  CAS  Google Scholar 

  8. Chaytor AC, Hansen JA, van Heugten E et al (2011) Occurrence and decontamination of mycotoxins in swine feed. Asian-Australas J Anim Sci 24:723–738

    Article  CAS  Google Scholar 

  9. Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  10. Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    PubMed  Article  CAS  Google Scholar 

  11. Dai ZL, Li XL, Xi PB et al (2012b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    PubMed  Article  CAS  Google Scholar 

  12. Dai ZL, Li XL, Xi PB et al (2013a) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    PubMed  Article  CAS  Google Scholar 

  13. Dai ZL, Wu ZL, Yang Y et al (2013b) Nitric oxide and energy metabolism in mammals. BioFactors 39:383–391

    PubMed  Article  CAS  Google Scholar 

  14. Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    PubMed  Article  CAS  Google Scholar 

  15. Dinu D, Bodea GO, Ceapa CD et al (2011) Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon 57:1023–1032

    PubMed  Article  CAS  Google Scholar 

  16. Fokunang CN, Tembe-Fokunang EA, Tomkins P et al (2006) Global impact of mycotoxins on human and animal health management. Outlook Agric 35:247–253

    Article  Google Scholar 

  17. Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  18. Guan S, Gong M, Yin YL et al (2011) Occurrence of mycotoxins in feeds and feed ingredients in China. J Food Agric Environ 9:163–167

    Google Scholar 

  19. He QH, Ren PP, Kong XF et al (2012) Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem 23:133–139

    PubMed  Article  CAS  Google Scholar 

  20. He LQ, Yang HS, Li TJ et al (2013a) Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 45:383–391

    PubMed  Article  CAS  Google Scholar 

  21. He LQ, Yin YL, Li TJ et al (2013b) Use of the Ussing chamber technique to study nutrient transport by epithelial tissues. Front Biosci 18:1266–1274

    Article  CAS  Google Scholar 

  22. Hou YQ, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    PubMed  Article  CAS  Google Scholar 

  23. Hou YQ, Wang L, Yi D et al (2013) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    PubMed  Article  CAS  Google Scholar 

  24. Jiang SZ, Yang ZB, Yang WR et al (2011) Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J Anim Sci 89:3008–3015

    PubMed  Article  CAS  Google Scholar 

  25. Jobgen W, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    PubMed  Article  CAS  Google Scholar 

  26. Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  27. Kong X, Tan B, Yin Y et al (2012) l-arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    PubMed  Article  CAS  Google Scholar 

  28. Koppelmann T, Pollak Y, Mogilner J et al (2012) Dietary l-arginine supplementation reduces methotrexate-induced intestinal mucosal injury in rat. BMC Gastroenterol 12:41

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. Lei J, Feng DY, Zhang YL et al (2012) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci 17:2725–2739

    Article  CAS  Google Scholar 

  30. Li P, Yin YL, Li DF et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    PubMed  Article  CAS  Google Scholar 

  31. Li XL, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    PubMed  Article  CAS  Google Scholar 

  32. Liu YL, Meng GQ, Wang HR et al (2011) Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. Br Poult Sci 52:255–263

    PubMed  Article  CAS  Google Scholar 

  33. Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42:2111–2119

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  34. Maresca M, Mahfoud R, Garmy N et al (2002) The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J Nutr 132:2723–2731

    PubMed  CAS  Google Scholar 

  35. Mary VS, Theumer MG, Arias SL et al (2012) Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302:299–307

    PubMed  Article  CAS  Google Scholar 

  36. Packer RA, Moore GE, Chang CY et al (2012) Serum d-lactate concentrations in cats with gastrointestinal disease. J Vet Intern Med 26:905–910

    PubMed  Article  CAS  Google Scholar 

  37. Park BJ, Takatori K, Sugita-Konishi Y et al (2007) Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 201:5733–5737

    Article  CAS  Google Scholar 

  38. Ren W, Luo W, Wu M et al (2011) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45:479–488

    PubMed  Article  CAS  Google Scholar 

  39. Ren W, Yin YL, Liu G et al (2012) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  40. Rezaei R, Knabe DA, Wu G (2013a) Impact of aflatoxins on swine nutrition and possible measures of control and amelioration. Aflatoxin control: safeguarding animal feed with calcium smectite. In: Joe B. Dixon, Ana L. Barrientos Velázquez, Youjun Deng, (eds) American Society of Agronomy and Soil Science, Madison, pp 54–67. doi:10.2136/2013.aflatoxins.c6

  41. Rezaei R, Knabe DA, Tekwe CD et al (2013b) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    PubMed  Article  CAS  Google Scholar 

  42. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  43. Rhoads JM, Liu Y, Niu X et al (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J Nutr 138:1652–1657

    PubMed  CAS  Google Scholar 

  44. Richard JL et al (2007) Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 119:3–10

    PubMed  Article  CAS  Google Scholar 

  45. Ruan Z, Lv YF, Fu XF et al (2013) Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose. Amino Acids 45:877–887

    PubMed  Article  CAS  Google Scholar 

  46. Stechmiller JK, Childress B, Cowan L et al (2005) Arginine supplementation and wound healing. Nutr Clin Pract 20:52–61

    PubMed  Article  Google Scholar 

  47. Swamy HVLN, Smith TK, MacDonald EJ et al (2003) Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J Anim Sci 81:2792–2803

    PubMed  CAS  Google Scholar 

  48. Tan BE, Yin YL, Liu ZQ et al (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    PubMed  Article  CAS  Google Scholar 

  49. Tan BE, Yin YL, Kong XF et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  50. Tan B, Li X, Wu G et al (2012a) Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine. Amino Acids 43:2481–2489

    PubMed  Article  CAS  Google Scholar 

  51. Tan BE, Li XG, Yin YL et al (2012b) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci 17:2237–2246

    Article  CAS  Google Scholar 

  52. Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  Article  CAS  Google Scholar 

  53. Wang XQ, Ou DY, Yin JD et al (2009) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    PubMed  Article  CAS  Google Scholar 

  54. Wang WW, Wu ZL, Dai ZL et al (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    PubMed  Article  CAS  Google Scholar 

  55. Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  56. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    PubMed  Article  CAS  Google Scholar 

  57. Wu G (2010a) Recent advances in swine amino acid nutrition. J Anim Sci Biotechnol 1:49–61

    Google Scholar 

  58. Wu G (2010b) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  59. Wu G (2013a) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    PubMed  Article  CAS  Google Scholar 

  60. Wu G (2013b) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  61. Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  62. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Wu G, Meier SA, Knabe DA (1996a) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  65. Wu G, Knabe DA, Flynn NE et al (1996b) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  66. Wu G, Collins JK, Perkins-Veazie P et al (2007a) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  67. Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  68. Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  69. Wu X, Ruan Z, Gao YL et al (2010) Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39:831–839

    PubMed  Article  CAS  Google Scholar 

  70. Wu G, Bazer FW, Johnson GA et al (2011a) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    PubMed  Article  CAS  Google Scholar 

  71. Wu G, Bazer FW, Burghardt RC et al (2011b) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  72. Wu X, Yin YL, Liu YQ et al (2012) Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim Reprod Sci 132:187–192

    PubMed  Article  CAS  Google Scholar 

  73. Wu G, Wu ZL, Dai ZL et al (2013a) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    PubMed  Article  CAS  Google Scholar 

  74. Wu G, Bazer FW, Satterfield MC et al (2013b) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    PubMed  Article  CAS  Google Scholar 

  75. Yao K, Guan S, Li T et al (2011) Dietary l-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr 105:703–709

    PubMed  Article  CAS  Google Scholar 

  76. Yao K, Yin YL, Li XL et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    PubMed  Article  CAS  Google Scholar 

  77. Yin YL, Tan B et al (2010) Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. J Food Agric Environ 8:447–462

    CAS  Google Scholar 

  78. Yin J, Ren W, Liu G et al (2013a) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 47:1027–1035

    PubMed  Article  CAS  Google Scholar 

  79. Yin J, Ren WK, Wu XS et al (2013b) Oxidative stress-mediated signaling pathways: a review. J Food Agric Environ 11:132–139

    Google Scholar 

  80. Young JC, Blackwell BA, Apsimon JW et al (1986) Alkaline-degradation of the mycotoxin 4-deoxynivalenol. Tetrahedron Lett 27:1019–1022

    Article  CAS  Google Scholar 

  81. Yunus AW, Ghareeb K, Abd-El-Fattah AA et al (2011) Gross intestinal adaptations in relation to broiler performance during chronic aflatoxin exposure. Poult Sci 90:1683–1689

    PubMed  Article  CAS  Google Scholar 

  82. Zhang J, Yin YL, Shu XG et al (2013a) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    PubMed  Article  CAS  Google Scholar 

  83. Zhang SH, Qiao SY, Ren M et al (2013b) Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191–1205

    PubMed  Article  CAS  Google Scholar 

  84. Zhou XH, Wu X, Yin YL et al (2012) Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats. Amino Acids 43:813–821

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by Grants from the 973 National Key Basic Research of China (No. 2013CB127301), the National Natural Science Foundation of China (No. 31272463, 31072042, and 31272450), Hunan Provincial Natural Science Foundation of China (No. K1307007-21), and Texas AgriLife Research Hatch Project (H-8200).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tiejun Li.

Additional information

J. Yin and W. Ren contributed equally to the present study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, J., Ren, W., Duan, J. et al. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 46, 883–892 (2014). https://doi.org/10.1007/s00726-013-1643-5

Download citation

Keywords

  • Arginine
  • Mycotoxin
  • Small intestine
  • Swine
  • Nutrition