Skip to main content
Log in

Separate mechanisms for age-related truncation and racemisation of peptide-bound serine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Some amino acids are particularly susceptible to degradation in long-lived proteins. Foremost among these are asparagine, aspartic acid and serine. In the case of serine residues, cleavage of the peptide bond on the N-terminal side, as well as racemisation, has been observed. To investigate the role of the hydroxyl group, and whether cleavage and racemisation are linked by a common mechanism, serine peptides with a free hydroxyl group were compared to analogous peptides where the serine hydroxyl group was methylated. Peptide bond cleavage adjacent to serine was increased when the hydroxyl group was present, and this was particularly noticeable when it was present as the hydroxide ion. Adjacent amino acid residues also had a pronounced affect on cleavage at basic pH, with the SerPro motif being especially susceptible to scission. Methylation of the serine hydroxyl group abolished truncation, as did insertion of a bulky amino acid on the N-terminal side of serine. By contrast, racemisation of serine occurred to a similar extent in both O-methylated and unmodified peptides. On the basis of these data, it appears that racemisation of Ser, and cleavage adjacent to serine, occur via separate mechanisms. Addition of water across the double bond of dehydroalanine was not detected, suggesting that this mechanism was unlikely to be responsible for conversion of l-serine to d-serine. Abstraction of the alpha proton may account for the majority of racemisation of serine in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

O-Me:

O-Methyl ether

Ac:

Acetyl

Z:

Benzyloxy-carbonyl

DHA:

Dehydroalanine

References

  • Alexander AJ, Hughes DE (1995) Monitoring of IgG antibody thermal stability by micellar electrokinetic capillary chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 67(20):3626–3632

    Article  CAS  PubMed  Google Scholar 

  • Argirov OK, Lin B, Ortwerth BJ (2004) 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses. J Biol Chem 279(8):6487–6495

    Article  CAS  PubMed  Google Scholar 

  • Bada JL (1972) Kinetics of racemization of amino acids as a function of pH. J Amer Chem Soc 94(4):1371–1373

    Article  CAS  Google Scholar 

  • Ball LE, Garland DL, Crouch RK, Schey KL (2004) Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence. Biochemistry 43:9856–9865

    Article  CAS  PubMed  Google Scholar 

  • Bongers J, Heimer EP, Lambros T, Pan YCE, Campbell RM, Felix AM (1992) Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor. Int J Pept Protein Res 39(4):364–374

    Article  CAS  PubMed  Google Scholar 

  • Bruckner H, Schafer S, Bahnmuler D, Hausch M (1987) Quantitative determination of the racemization of amino acids in food proteins by chiral-phase capillary gas chromatography. Fresenius’ Zeitschrift für analytische Chemie 327(1):30–31

    Article  Google Scholar 

  • Byford MF (1991) Rapid and selective modification of phosphoserine residues catalysed by Ba2+ ions for their detection during peptide microsequencing. Biochem J 280(Pt 1):261–265

    CAS  PubMed  Google Scholar 

  • Clarke S (1987) Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 30(6):808–821

    Article  CAS  PubMed  Google Scholar 

  • Cloos PA, Jensen AL (2000) Age-related de-phosphorylation of proteins in dentin: a biological tool for assessment of protein age. Biogerontology 1(4):341–356

    Article  CAS  PubMed  Google Scholar 

  • Cordoba AJ, Shyong B-J, Breen D, Harris RJ (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B 818(2):115–121

    Article  CAS  Google Scholar 

  • D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136(2):284–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Dovrat A, Scharf J, Gershon D (1984) Glyceraldehyde 3-phosphate dehydrogenase activity in rat and human lenses and the fate of enzyme molecules in the aging lens. Mech Ageing Dev 28(2–3):187–191

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MG, Lam J, Truscott RJW (2012) Degradation of an old human protein. Age-dependent cleavage of γS crystallin generates a peptide that binds to cell membranes. J Biol Chem 287(46):39012–39020. doi:10.1074/jbc.M112.391565

    Google Scholar 

  • Fujii N, Momose Y, Harada K (1996) Kinetic study of racemization of aspartyl residues in model peptides of αA-crystallin. Int J Pept Protein Res 48(2):118–122

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Takemoto LJ, Matsumoto S, Hiroki K, Boyle D, Akaboshi M (2000) Comparison of aspartic acid content in alpha A-crystallin from normal and age-matched cataractous human lenses. Biochem Biophys Res Commun 278(2):408–413

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides––succinimide-linked reactions that contribute to protein-degradation. J Biol Chem 262(2):785–794

    CAS  PubMed  Google Scholar 

  • Goodlett DR, Abuaf PA, Savage PA, Kowalski KA, Mukherjee TK, Tolan JW, Corkum N, Goldstein G, Crowther JB (1995) Peptide chiral purity determination: hydrolysis in deuterated acid, derivatization with Marfey’s reagent and analysis using high-performance liquid chromatography–electrospray ionization-mass spectrometry. J Chromatogr A 707(2):233–244

    Article  CAS  PubMed  Google Scholar 

  • Groenen PJTA, van Dongen MJP, Voorter CEM, Bloemendal H, de Jong WW (1993) Age-dependent deamidation of alpha B-crystallin. FEBS Lett 322(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Hains PG, Truscott RJ (2010) Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci 51(6):3107–3114

    Article  PubMed  Google Scholar 

  • Harrington V, McCall S, Huynh S, Srivastava K, Srivastava O (2004) Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Mol Vis 10(61):476–489

    CAS  PubMed  Google Scholar 

  • Hayashi R, Kameda I (1980) Decreased proteolysis of alkali-treated protein: consequences of racemisation in food processing. J Food Sci 45(5):1430–1431

    Article  CAS  Google Scholar 

  • Heys KR, Friedrich MG, Truscott RJW (2007) Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, α-crystallin, in maintaining lens flexibility. Aging Cell 6(6):807–815

    Article  CAS  PubMed  Google Scholar 

  • Hooi M, Truscott R (2011) Racemisation and human cataract. d-Ser, d-Asp/Asn and d-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age 33(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Hooi MY, Raftery MJ, Truscott RJ (2012a) Age-dependent racemization of serine residues in a human chaperone protein. Protein Sci 22(1):93–100

    Article  Google Scholar 

  • Hooi MY, Raftery MJ, Truscott RJ (2012b) Racemization of two proteins over our lifespan: deamidation of asparagine 76 in gammaS crystallin is greater in cataract than in normal lenses across the age range. Invest Ophthalmol Vis Sci 53(7):3554–3561

    Article  CAS  PubMed  Google Scholar 

  • Korlimbinis A, Truscott RJ (2006) Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract. Biochemistry 45(6):1950–1960. doi:10.1021/bi051744y

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Kumagae Y, Miller CA, Kaneko I (2003) Beta-amyloid racemized at the Ser26 residue in the brains of patients with Alzheimer disease: implications in the pathogenesis of Alzheimer disease. J Neuropathol Exp Neurol 62(3):248–259

    CAS  PubMed  Google Scholar 

  • Lampi KJ, Oxford JT, Bachinger HP, Shearer TR, David LL, Kapfer DM (2001) Deamidation of human βB1 alters the elongated structure of the dimer. Exp Eye Res 72(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Larsen ML, Horder M, Mogensen EF (1990) Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus. N Engl J Med 323(15):1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Gaza-Bulseco G, Sun J (2006) Characterization of the stability of a fully human monoclonal IgG after prolonged incubation at elevated temperature. J Chromatogr B 837(1–2):35–43

    Article  CAS  Google Scholar 

  • Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J (2008) Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 3(1):e1529

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyons B, Jamie J, Truscott R (2011) Spontaneous cleavage of proteins at serine residues. Int J Pept Res Ther 17(2):1–5

    Article  Google Scholar 

  • Masters PM, Bada JL, Samuel Zigler J (1977) Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268(5615):71–73

    Article  CAS  PubMed  Google Scholar 

  • McCudden CR, Kraus VB (2006) Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. Clin Biochem 39(12):1112–1130

    Article  CAS  PubMed  Google Scholar 

  • Miesbauer LR, Zhou X, Yang Z, Sun Y, Smith DL, Smith JB (1994) Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269(17):12494–12502

    CAS  PubMed  Google Scholar 

  • Mills KV, Paulus H (2005) Biochemical mechanisms of intein-mediated protein splicing. Nucleic Acids Mol Biol 16:233–255

    Article  CAS  Google Scholar 

  • Polgar L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62(19–20):2161–2172

    Article  CAS  PubMed  Google Scholar 

  • Robinson NE, Robinson AB (2001) Deamidation of human proteins. Proc Natl Acad Sci USA 98(22):12409–12413

    Article  CAS  PubMed  Google Scholar 

  • Santhoshkumar P, Udupa P, Murugesan R, Sharma KK (2008) Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem 283:8477–8485

    Article  CAS  PubMed  Google Scholar 

  • Savas JN, Toyama BH, Xu T, Yates JR, Hetzer MW (2012) Extremely long-lived nuclear pore proteins in the rat brain. Science 335(6071):942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sell DR, Monnier VM (2005) Ornithine is a novel amino acid and a marker of arginine damage by oxoaldehydes in senescent proteins. Ann NY Acad Sci 1043:118–128

    Article  CAS  PubMed  Google Scholar 

  • Shapira R, Austin GE, Mirra SS (1988a) Neuritic plaque amyloid in Alzheimer’s disease is highly racemized. J Neurochem 50(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Shapira R, Wilkinson KD, Shapira G (1988b) Racemization of individual aspartate residues in human myelin basic protein. J Neurochem 50(2):649–654

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87(5):1828–1834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sine HE, Hass LF (1969) Studies on the structure and function of muscle aldolase. IV. The action of dilute alkali on primary structure and its effect on the determination of subunit molecular weight. J Biol Chem 244(2):430–439

    CAS  PubMed  Google Scholar 

  • Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801

    Article  CAS  PubMed  Google Scholar 

  • Smith GG, Evans RC (1980) The effect of structure and conditions on the rate of racemization of free and bound amino acids. Biogeochemistry of amino acids. Wiley, NY

    Google Scholar 

  • Srivastava OP (2000) Truncation of lens crystallins. Invest Ophthalmol Vis Sci 41(4):I10

    Google Scholar 

  • Srivastava OP, Srivastava K (1996) Characterization of three isoforms of a 9 kDa γd-crystallin fragment isolated from human lenses. Exp Eye Res 62(6):593–604

    Article  CAS  PubMed  Google Scholar 

  • Srivastava OP, Srivastava K (2003) Beta B2-crystallin undergoes extensive truncation during aging in human lenses. Biochem Biophys Res Commun 301(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264(11):6164–6170

    CAS  PubMed  Google Scholar 

  • Su SP, McArthur JD, Aquilina JA (2010) Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Exp Eye Res 91(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Su SP, Lyons B, Friedrich M, McArthur JD, Song X, Xavier D, Aquilina JA, Truscott RJ (2012) Molecular signatures of long-lived proteins: autolytic cleavage adjacent to serine residues. Aging Cell 11(6):1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Takemoto LJ (1995) Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lens. Curr Eye Res 14(9):837–841

    Article  CAS  PubMed  Google Scholar 

  • Takemoto LJ (1998) Quantitation of specific cleavage sites at the C-terminal region of alpha-A crystallin from human lenses of different age. Exp Eye Res 66(2):263–266

    Article  CAS  PubMed  Google Scholar 

  • Truscott RJW (2010) Are ancient proteins responsible for the age-related decline in health and fitness? Rejuvenation Res 13:83–89. doi:10.1089/rej.2009.0938

    Article  CAS  PubMed  Google Scholar 

  • Truscott RJ, Mizdrak J, Friedrich MG, Hooi MY, Lyons B, Jamie JF, Davies MJ, Wilmarth PA, David LL (2012) Is protein methylation in the human lens a result of non-enzymatic methylation by S-adenosylmethionine? Exp Eye Res 99:48–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Lyons B, Truscott RJW, Schey KL (2013) Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates. Aging Cell. doi:10.1111/acel.12164

  • Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5(10):2554–2566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasaki M, Takahashi N, Hirose M (2003) Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin form. J Biol Chem 278(37):35524–35530

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Korlimbinis A, Truscott RJW (2010) Age-dependent denaturation of enzymes in the human lens: a paradigm for organismic aging? Rejuvenation Res 13:553–560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by NHMRC (Grant # 1008667).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. W. Truscott.

Electronic supplementary material

726_2013_1619_MOESM1_ESM.tif

Supplementary Figure 1A: Truncation at N-terminal side of Ser as a function of time. Cleavage was calculated based on the amount of Ac-AA formed compared to the amount of each peptide present at time = 0. Peptides were incubated in sodium borate buffer (100 mM, pH 12.5) at 37 °C. (A) = Ac-AASAA and Ac-AAPSAA. (TIFF 1561 kb)

726_2013_1619_MOESM2_ESM.tif

Supplementary Figure 1B: Truncation at N-terminal side of Ser as a function of time. Cleavage was calculated based on the amount of Ac-AA formed compared to the amount of each peptide present at time = 0. Peptides were incubated in sodium borate buffer (100 mM, pH 12.5) at 37 °C (B) = Ac-AASAA and Ac-AALSAA.(TIFF 1563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, B., Jamie, J.F. & Truscott, R.J.W. Separate mechanisms for age-related truncation and racemisation of peptide-bound serine. Amino Acids 46, 199–207 (2014). https://doi.org/10.1007/s00726-013-1619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1619-5

Keywords

Navigation