Skip to main content
Log in

Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) harbors, close to Phe-508, whose deletion is the commonest cause of cystic fibrosis, a conserved potential CK2 phospho-acceptor site (Ser511), which however is not susceptible to phosphorylation by CK2. To shed light on this apparent paradox, a series of systematically substituted peptides encompassing Ser511 were assayed for their ability to be phosphorylated. The main outcomes of our study are the following: (a) Tyr512 plays a prominent role as a negative determinant as its replacement by Ala restores Ser511 phosphorylation by CK2; (b) an even more pronounced phosphorylation of Ser511 is promoted if Tyr512 is replaced by phospho-tyrosine instead of alanine; (c) Tyr512 and, to a lesser extent, Tyr515 are readily phosphorylated by Lyn, a protein tyrosine kinase of the Src family, in a manner which is enhanced by the concomitant Phe508 deletion. Collectively taken, our data, in conjunction with the notion that Tyr515 is phosphorylated in vivo, disclose the possibility that CFTR Ser511 can be phosphorylated by the combined action of tyrosine kinases and CK2 and disclose a new mechanism of hierarchical phosphorylation where the role of the priming kinase is that of removing negative determinant(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atwell S, Brouillette CG, Conners K, Emtage S, Gheyi T, Guggino WB, Hendle J, Hunt JF, Lewis HA, Lu F, Protasevich II, Rodgers LA, Romero R, Wasserman SR, Weber PC, Wetmore D, Zhang FF, Zhao X (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng Des Sel 23:375–384. doi:10.1093/protein/gzq004

    Article  PubMed  CAS  Google Scholar 

  • Billet A, Luo Y, Balghi H, Hanrahan JW (2013) Role of tyrosine phosphorylation in the muscarinic activation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Biol Chem 288:21815–21823. doi:10.1074/jbc.M113.479360

    Article  PubMed  CAS  Google Scholar 

  • Carpino LA, Henklein P, Foxman BM, Abdelmoty I, Costisella B, Wray V, Domke T, El-Faham A, Mügge (2001) The solid state and solution structure of HAPyU. J Org Chem 66:5245–5247

    Article  PubMed  CAS  Google Scholar 

  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528. doi:10.1038/354526a0

    Article  PubMed  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9- fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  PubMed  CAS  Google Scholar 

  • Glass DB, Masaracchia RA, Feramisco JR, Kemp BE (1978) Isolation of phosphorylated peptides and proteins on ion exange papers. Anal Biochem 87:566–575

    Article  PubMed  CAS  Google Scholar 

  • Heda GD, Tanwani M, Marino CR (2001) The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 280:166–174

    Google Scholar 

  • Hornbeck PV, Kornhauser JM, Tkachev S et al (2011) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. doi:10.1093/nar/gkr1122

    Article  PubMed  Google Scholar 

  • Hunt JF, Wang C, Ford RC (2013) Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold spring Harb Perspect Med 3:a009514. doi:10.1101/cshperspect.a009514

    Article  PubMed  Google Scholar 

  • Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839. doi:10.1016/S1097-2765(03)00358-7

    Article  PubMed  CAS  Google Scholar 

  • Lubamba B, Dhooghe B, Noel S, Leal T (2012) Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45:1132–1144. doi:10.1016/j.clinbiochem.2012.05.034

    Article  PubMed  CAS  Google Scholar 

  • Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, Kunzelmann K, Farinha CM (2011) Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Mol Cell Biol 31:4392–4404. doi:10.1128/MCB.05517-11

    Article  PubMed  CAS  Google Scholar 

  • Määttänen P, Gehring K, Bergeron JJ, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21:500–511. doi:10.1016/j.semcdb.2010.03.006

    Article  PubMed  Google Scholar 

  • Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  • Meggio F, Perich JW, Reynolds EC (1991) Pinna LA (1991) Phosphotyrosine as a specificity determinant for casein kinase-2, a growth related Ser/Thr-specific protein kinase. FEBS Lett 279:307–309. doi:10.1016/0014-5793(91)80174-2

    Article  PubMed  CAS  Google Scholar 

  • Mendes AI, Matos P, Moniz S et al (2011) Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase. Mol Cell Biol 31:4076–4086. doi:10.1128/MCB.05152-11

    Article  PubMed  CAS  Google Scholar 

  • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of ∆F508 CFTR revealed by analyses of evolved sequences. Cell 148:164–174. doi:10.1016/j.cell.2011.11.023

    Article  PubMed  CAS  Google Scholar 

  • Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2008) Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47:7925–7936. doi:10.1021/bi800316z

    Article  PubMed  CAS  Google Scholar 

  • Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  PubMed  CAS  Google Scholar 

  • Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163. doi:10.1016/j.cell.2011.11.024

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726. doi:10.1146/annurev.biochem.75.103004.142532

    Article  PubMed  CAS  Google Scholar 

  • Roach PJ (1991) Multisite and hierarchal protein phosphorylation. J Biol Chem 266:14139–14142

    PubMed  CAS  Google Scholar 

  • Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793:847–859. doi:10.1016/j.bbamcr.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  • Sarno S, Vaglio P, Meggio F, Issinger OG, Pinna LA (1996) Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 271:10595–10601. doi:10.1074/jbc.271.18.10595

    Article  PubMed  CAS  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283. doi:10.1016/j.cell.2006.05.041

    Article  PubMed  CAS  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. doi:10.1038/nprot.2006.4

    Article  PubMed  Google Scholar 

  • Serohijos AWR, Hegedűs T, Riordan JR, Dokholyan NV (2008) Diminished self-chaperoning activity of the ΔF508 mutant of CFTR results in protein misfolding. PLoS Comput Biol 4:e1000008. doi:10.1371/journal.pcbi.1000008

    Article  PubMed  Google Scholar 

  • Thibodeau PH, Richardson JM 3rd, Wang W et al (2010) The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem 285:35825–35835. doi:10.1074/jbc.M110.131623

    Article  PubMed  CAS  Google Scholar 

  • Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implication for PTEN stability to proteasome-mediated degradation. J Biol Chem 276:993–998. doi:10.1074/jbc.M009134200

    Article  PubMed  CAS  Google Scholar 

  • Ubersax JA, Ferrell EL Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541. doi:10.1038/nrm2203

    Article  PubMed  CAS  Google Scholar 

  • Venerando A, Franchin C, Cant N et al (2013) Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PLoS ONE 8:e74232. doi:10.1371/journal.pone.0074232

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Du D, Fang L, Yang G, Zhang C, Zeng R, Ullrich A, Lottspeich F, Chen Z (2006) Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. EMBO J 25:5058–5070. doi:10.1038/sj.emboj.7601384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fondazione per la Ricerca sulla Fibrosi Cistica (Grant FFC#3/2011 adopted by Delegazione FFC della Valdadige and Associazione Trentina FC Onlus) and AIRC (Italian Association for Cancer Research), [Project IG 10312].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo A. Pinna.

Additional information

L. Cesaro and O. Marin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesaro, L., Marin, O., Venerando, A. et al. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids 45, 1423–1429 (2013). https://doi.org/10.1007/s00726-013-1613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1613-y

Keywords

Navigation