Amino Acids

, Volume 46, Issue 1, pp 177–186 | Cite as

Proline-glutamate chimera’s side chain conformation directs the type of β-hairpin structure

  • Jyotirmoy Maity
  • Ulla I. M. Gerling
  • Stella Vukelić
  • Andreas Schäfer
  • Beate Koksch
Original Article
  • 287 Downloads

Abstract

Our aim was to study the impact of two proline chimeras, containing a glutamic acid side chain in cis- or trans-configuration, on secondary structure formation. We further investigated to what extent the configuration of the side chain contributes to the overall peptide conformation. We used a 10 residue peptide (IYSNPDGTWT) that forms a β-hairpin in water. The turn-forming proline was substituted with either a cis- or trans-proline-glutamic acid chimera, resulting in the peptides IYSNPcis-EDGTWT (P1_Pcis-E) and IYSNPtrans-EDGTWT (P1_Ptrans-E). We studied the conformation of the modified peptides by circular dichroism (CD) and NMR-spectroscopy, and SEC/static light scattering (SLS) analysis. NMR analysis reveals that the modified peptides maintain the β-hairpin conformation in aqueous solution. At 5 °C and pH 4.3, the peptide (P1_Pcis-E) was found to adopt two coexisting β-hairpin conformations (2:2 β-hairpin, and 3:5 β-hairpin). In contrast to that, the peptide (P1_Ptrans-E) adopts a 2:2 β-hairpin that exists in equilibrium with a 4:4 β-hairpin conformation. The adoption of ordered β-hairpin structures for both modified peptides could be confirmed by CD spectroscopy, while SEC/SLS analysis showed a monomeric oligomerization state for all three investigated peptides. With the combination of several NMR methods, we were able to elucidate that even small alterations in the side chain conformation of the proline-glutamate chimera (cis or trans) can significantly influence the conformation of the adopted β-hairpin.

Keywords

Proline chimera β-Hairpin conformation β-Turn Conformational analysis CD NMR 

Abbreviations

CD

Circular dichroism

HPLC

High performance liquid chromatography

Fmoc

Fluorenylmethoxy carbonyl

AU

Analytical ultracentrifugation

SEC

Size exclusion chromatography

MD

Molecular dynamics

DIC

Diisopropylcarbodiimide

HOBT

1-Hydroxybenzotriazole

HOAT

1-Hydroxy-7-azabenzotriazole

TFA

Trifluoroacetic acid

TIS

Triisopropylsilane

Pcis-E

cis-Proline glutamate chimera

Ptrans-E

trans-proline glutamate chimera

NMR

Nuclear magnetic resonance

1H NMR

Proton nuclear magnetic resonance

COSY

Correlation spectroscopy

TOCSY

Total correlation spectroscopy

NOE

Nuclear Overhauser effect

NOESY

Nuclear Overhauser effect spectroscopy

ROESY

Rotating frame nuclear Overhauser effect spectroscopy

SPPS

Solid phase peptide synthesis

Supplementary material

726_2013_1610_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1318 kb)

References

  1. Aubry A, Vitoux B, Marraud M (1985) Conformational properties of Pro–Pro sequences. I. Crystal structures of two dipeptides with l-Pro-l-Pro and l-Pro-d-Pro sequences. Biopolymers 24:1089–1100PubMedCrossRefGoogle Scholar
  2. Aue WP, Bartholdi E, Ernst RR (1976) Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 64:2229–2246CrossRefGoogle Scholar
  3. Blanco FJ, Jimenez MA, Herranz J, Rico M, Santoro J, Nieto JL (1993) NMR evidence of a short linear peptide that folds into a β-hairpin in aqueous solution. J Am Chem Soc 115:5887–5888CrossRefGoogle Scholar
  4. Blanco FJ, Rivas G, Serrano L (1994) A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nat Struct Biol 1:584–590PubMedCrossRefGoogle Scholar
  5. Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106:811–813CrossRefGoogle Scholar
  6. Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528Google Scholar
  7. Chatterjee B, Saha I, Raghothama S, Aravinda S, Rai R, Shamala N, Balaram P (2008) Designed peptides with homochiral and heterochiral diproline templates as conformational constraints. Chem Eur J 14:6192–6204PubMedCrossRefGoogle Scholar
  8. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247–3256PubMedCrossRefGoogle Scholar
  9. de Alba Ed, Jiménez MA, Rico M, Nieto JL (1996) Conformational investigation of designed short linear peptides able to fold into β-hairpin structures in aqueous solution. Fold Des 1:133–144PubMedCrossRefGoogle Scholar
  10. de Alba E, Jiménez MA, Rico M (1997) Turn residue sequence determines β-Hairpin conformation in designed peptides. J Am Chem Soc 119:175–183CrossRefGoogle Scholar
  11. Delaye PO, Vasse JL, Szymoniak J (2010) Asymmetric synthesis of proline-based conformationally constrained tryptophan mimetic. Org Biomol Chem 8:3635–3637PubMedCrossRefGoogle Scholar
  12. Dyson HJ, Wright PE (1991) Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem 20:519–538PubMedCrossRefGoogle Scholar
  13. Dyson HJ, Wright PE (1993) Peptide conformation and protein folding. Curr Opin Struct Biol 3:60–65CrossRefGoogle Scholar
  14. Fatas P, Jimenez AI, Calaza MI, Cativiela C (2012) β-Phenylproline: the high β-turn forming propensity of proline combined with an aromatic side chain. Org Biomol Chem 10:640–651PubMedCrossRefGoogle Scholar
  15. Fernández-Escamilla AM, Ventura S, Serrano L, Jiménez MA (2006) Design and NMR conformational study of a β-sheet peptide based on Betanova and WW domains. Protein Sci 15:2278–2289PubMedCrossRefGoogle Scholar
  16. Gerling UIM, Brandenburg E, Berlepsch Hv, Pagel K, Koksch B (2010) Structure analysis of an amyloid-forming model peptide by a systematic glycine and proline scan. Biomacromolecules 12:2988–2996CrossRefGoogle Scholar
  17. Guitot K, Larregola M, Pradhan TK, Vasse JL, Lavielle S, Bertus P, Szymoniak J, Lequin O, Karoyan P (2011) The combination of prolinoamino acids and cyclopropylamino acids leads to fully functionalized, stable β-turns in water. Chembiochem 12:1039–1042PubMedCrossRefGoogle Scholar
  18. Haque TS, Little JC, Gellman SH (1994) “Mirror image” reverse turns promote β-hairpin formation. J Am Chem Soc 116:4105–4106CrossRefGoogle Scholar
  19. Haque TS, Little JC, Gellman SH (1996) Stereochemical requirements for β-hairpin formation: model studies with four-residue peptides and depsipeptides. J Am Chem Soc 118:6975–6985CrossRefGoogle Scholar
  20. Horne WS, Price JL, Keck JL, Gellman SH (2007) Helix bundle quaternary structure from α/β-peptide foldamers. J Am Chem Soc 129:4178–4180PubMedCrossRefGoogle Scholar
  21. Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH (2009) Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers. Proc Nat Acad Sci USA 106:14751–14756. doi:10.1073/pnas.0902663106 PubMedCrossRefGoogle Scholar
  22. Ishikawa Y, Oka M, Hayashi T, Nishinaga A (1996) Theoretical analysis of α-helix hairpin structures constructed by two right-handed α-helices. Polym J 28:86–90CrossRefGoogle Scholar
  23. Ivanova G, Yakimova B, Angelova S, Stoineva I, Enchev V (2010) Influence of pH on the cis-trans isomerization of valine-proline dipeptide: an integrated NMR and theoretical investigation. J Mol Struct 975:330–334CrossRefGoogle Scholar
  24. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  25. Kang YK, Young Choi H (2004) Cis-trans isomerization and puckering of proline residue. Biophys Chem 111:135–142PubMedCrossRefGoogle Scholar
  26. Karoyan P, Quancard J, Vaissermann J, Chassaing Gr (2003) Amino-zinc-enolate carbometalation reactions: application to ring closure of terminally substituted olefin for the asymmetric synthesis of cis- and trans-3-prolinoleucine. J Org Chem 68:2256–2265PubMedCrossRefGoogle Scholar
  27. Kim PS, Baldwin RL (1990) Intermediates in the Folding Reactions of Small Proteins. Annu Rev Biochem 59:631–660PubMedCrossRefGoogle Scholar
  28. Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6PubMedCrossRefGoogle Scholar
  29. Lakshminarayanan R, Yoon I, Hegde BG, Fan D, Du C, Moradian-Oldak J (2009) Analysis of secondary structure and self-assembly of amelogenin by variable temperature circular dichroism and isothermal titration calorimetry. Proteins: Struct Funct Bioinf 76:560–569CrossRefGoogle Scholar
  30. Lengyel GA, Frank RC, Horne WS (2011) Hairpin folding behavior of mixed α/β-peptides in aqueous solution. J Am Chem Soc 133:4246–4249PubMedCrossRefGoogle Scholar
  31. Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP (2010) Update 1 of: β-strand mimetics. Chem Rev 110:32–69CrossRefGoogle Scholar
  32. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412PubMedCrossRefGoogle Scholar
  33. Maity J, Saha P, Gerling UIM, Lentz D, Koksch B (2012) An approach for simultaneous synthesis of cis- and trans-3-substituted proline-glutamic acid chimeras. Synthesis 44:3063–3070CrossRefGoogle Scholar
  34. Mezzache S, Afonso C, Pepe C, Karoyan P, Fournier F, Tabet JC (2003) Proton affinity of proline and modified prolines using the kinetic method: role of the conformation investigated by ab initio calculations. Rapid Commun Mass Spectrom 17:1626–1632PubMedCrossRefGoogle Scholar
  35. Milner-White EJ, Bell LH, Maccallum PH (1992) Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. Different puckers are favoured in certain situations. J Mol Biol 228:725–734PubMedCrossRefGoogle Scholar
  36. Mothes C, Larregola M, Quancard J, Goasdoué N, Lavielle S, Chassaing G, Lequin O, Karoyan P (2010) Prolinoamino acids as tools to build bifunctionalized, stable β-turns in water. Chembiochem 11:55–58PubMedCrossRefGoogle Scholar
  37. Munoz V, Thompson PA, Hofrichter J, Eaton WA (1997) Folding dynamics and mechanism of β-hairpin formation. Nature 390:196–199PubMedCrossRefGoogle Scholar
  38. Nesloney CL, Kelly JW (1996) A 2,3′-substituted biphenyl-based amino acid facilitates the formation of a monomeric β-hairpin-like structure in aqueous solution at elevated temperature. J Am Chem Soc 118:5836–5845CrossRefGoogle Scholar
  39. Oba M, Saegusa T, Nishiyama N, Nishiyama K (2009) Synthesis of non-proteinogenic amino acids using Michael addition to unsaturated orthopyroglutamate derivative. Tetrahedron 65:128–133CrossRefGoogle Scholar
  40. Pagel K, Wagner SC, Samedov K, von Berlepsch H, Böttcher C, Koksch B (2006) Random coils, β-sheet ribbons, and α-helical fibers: one peptide adopting three different secondary structures at will. J Am Chem Soc 128:2196–2197PubMedCrossRefGoogle Scholar
  41. Price JL, Horne WS, Gellman SH (2010) Structural consequences of β-amino acid preorganization in a self-assembling α/β-peptide: fundamental studies of foldameric helix bundles. J Am Chem Soc 132:12378–12387PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ramirez-Alvarado M, Blanco FJ, Serrano L (1996) De novo design and structural analysis of a model β-hairpin peptide system. Nat Struct Biol 3:604–612PubMedCrossRefGoogle Scholar
  43. Rance M (1987) Improved techniques for homonuclear rotating-frame and isotropic mixing experiments. J Magn Reson 74:557–564Google Scholar
  44. Rezaei Araghi R, Baldauf C, Gerling UIM, Cadicamo CD, Koksch B (2011) A systematic study of fundamentals in α-helical coiled coil mimicry by alternating sequences of β- and γ-amino acids. Amino Acids 41:733–742PubMedCrossRefGoogle Scholar
  45. Robinson JA (2008) β-Hairpin peptidomimetics: design, structures and biological activities. Acc Chem Res 41:1278–1288PubMedCrossRefGoogle Scholar
  46. Searle MS, Williams DH, Packman LC (1995) A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native β-hairpin. Nat Struct Biol 2:999–1006PubMedCrossRefGoogle Scholar
  47. Sibanda BL, Blundell TL, Thornton JM (1989) Conformation of β-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 206:759–777PubMedCrossRefGoogle Scholar
  48. Sugawara M, Tonan K, Ikawa S-i (2001) Effect of solvent on the cis-trans conformational equilibrium of a proline imide bond of short model peptides in solution. Spectrochim Acta A Mol Biomol Spectrosc 57:1305–1316PubMedCrossRefGoogle Scholar
  49. Thunecke F, Kálmán A, Kálmán F, Ma S, Rathore AS, Horváth C (1996) Kinetic study on the cis-trans isomerization of peptidyl-proline dipeptides. J Chromatogr 744:259–272CrossRefGoogle Scholar
  50. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R (2004) Mapping αβ amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 335:833–842PubMedCrossRefGoogle Scholar
  51. Wilmot CM, Thornton JM (1988) Analysis and prediction of the different types of β-turn in proteins. J Mol Biol 203:221–232PubMedCrossRefGoogle Scholar
  52. Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333PubMedCrossRefGoogle Scholar
  53. Wu YD, Han W, Wang DP, Gao Y, Zhao Y-L (2008) Theoretical Analysis of Secondary Structures of β-Peptides. Acc Chem Res 41:1418–1427PubMedCrossRefGoogle Scholar
  54. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  55. Wüthrich K, Billeter M, Braun W (1984) Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton–proton distances. J Mol Biol 180:715–740PubMedCrossRefGoogle Scholar
  56. Zimmerman SS, Scheraga HA (1976) Stability of cis, trans, and nonplanar peptide groups. Macromolecules 9:408–416PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Jyotirmoy Maity
    • 1
  • Ulla I. M. Gerling
    • 1
  • Stella Vukelić
    • 1
  • Andreas Schäfer
    • 2
  • Beate Koksch
    • 1
  1. 1.Institut für Chemie und BiochemieFreie Universität BerlinBerlinGermany
  2. 2.Gerätezentrum BioSupraMolFreie Universität BerlinBerlinGermany

Personalised recommendations