Skip to main content

Effect of citrulline on muscle functions during moderate dietary restriction in healthy adult rats

Abstract

Low calorie diets are designed to reduce body weight and fat mass, but they also lead to a detrimental loss of lean body mass, which is an important problem for overweight people trying to lose weight. In this context, a specific dietary intervention that preserves muscle mass in people following a slimming regime would be of great benefit. Leucine (LEU) and Citrulline (CIT) are known to stimulate muscle protein synthesis (MPS) in post-prandial and post-absorptive state, respectively. This makes them interesting bioactive components to test in the context of dietary restriction. We tested the concept of combining LEU and CIT in adult female rats. We postulated that the sequential administration of LEU (mixed in chow) and CIT (given in drinking water before a rest period) could be beneficial for preservation of muscle function during food restriction. Sixty female rats (22 weeks old) were randomized into six groups: one group fed ad libitum with a standard diet (C) and five food-restricted groups (60 % of spontaneous intake for 2 weeks) receiving a standard diet (R group), a CIT-supplemented diet (0.2 or 1 g/kg/day, CIT0.2 group and CIT1 group, respectively), a LEU-supplemented diet (1.0 g/kg/day) or a CIT + LEU-supplemented diet (CIT + LEU 1.0 g/kg/day each). At the end of the experiment, body composition, muscle contractile properties and muscle protein synthesis (MPS) rate were studied in the tibialis anterior muscle. Dietary restriction tended to decrease MPS (R: 2.5 ± 0.2 vs. C: 3.4 ± 0.4 %/day, p = 0.06) and decrease muscle strength (R: 3,045 ± 663 vs. C: 5,650 ± 661 A.U., p = 0.03). Only CIT administration (1 g/kg) was able to restore MPS (CIT1: 3.4 ± 0.3 vs. R: 2.5 ± 0.2 %/day, p = 0.05) and increase muscle maximum tetanic force (CIT1: 441 ± 15 vs. R: 392 ± 22 g, p = 0.05) and muscle strength (CIT1: 4,259 ± 478 vs. R: 3,045 ± 663 A.U., p = 0.05). LEU had no effect and CIT + LEU supplementation had few effects, limited to adipose mass and fatigue force. The results of this study highlight the ability of CIT alone to preserve muscle function during dietary restriction. Surprisingly, LEU antagonized some effects of CIT. The mechanisms involved in this antagonistic effect warrant further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abumrad NN, Miller B (1983) The physiologic and nutritional significance of plasma-free amino acid levels. JPEN J Parenter Enteral Nutr 7:163–170

    PubMed  Article  CAS  Google Scholar 

  • Anthony JC, Yoshizawa F, Anthony TG et al (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419

    PubMed  CAS  Google Scholar 

  • Anthony JC, Reiter AK, Anthony TG et al (2002) Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 51:928–936

    PubMed  Article  CAS  Google Scholar 

  • Balage M, Dardevet D (2010) Long-term effects of leucine supplementation on body composition. Curr Opin Clin Nutr Metab Care 13:265–270. doi:10.1097/MCO.0b013e328336f6b8

    PubMed  Article  CAS  Google Scholar 

  • Baracos VE, Mackenzie ML (2006) Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr 136:237S–242S

    PubMed  CAS  Google Scholar 

  • Bopp MJ, Houston DK, Lenchik L et al (2008) Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J Am Diet Assoc 108:1216–1220. doi:10.1016/j.jada.2008.04.017

    PubMed  Article  Google Scholar 

  • Chaston TB, Dixon JB, O’Brien PE (2007) Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond) 31:743–750. doi:10.1038/sj.ijo.0803483

    CAS  Google Scholar 

  • Clark BC, Fernhall B, Ploutz-Snyder LL (2006a) Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy. J Appl Physiol 101:256–263. doi:10.1152/japplphysiol.01402.2005

    PubMed  Article  Google Scholar 

  • Clark BC, Manini TM, Bolanowski SJ, Ploutz-Snyder LL (2006b) Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy. J Appl Physiol 101:264–272. doi:10.1152/japplphysiol.01404.2005

    PubMed  Article  Google Scholar 

  • Curis E, Nicolis I, Moinard C et al (2005) Almost all about citrulline in mammals. AminoAcids 29:177–205

    CAS  Google Scholar 

  • Cynober L, Moinard C, De Bandt J-P (2010) The 2009 ESPEN Sir David Cuthbertson. Citrulline: a new major signaling molecule or just another player in the pharmaconutrition game? Clin Nutr 29:545–551. doi:10.1016/j.clnu.2010.07.006

    PubMed  Article  CAS  Google Scholar 

  • Faure C, Morio B, Chafey P et al (2013) Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats. Proteomics 13:2191–2201. doi:10.1002/pmic.201200262

    PubMed  Article  CAS  Google Scholar 

  • Faure C, Raynaud-Simon A, Ferry A et al (2011) Leucine and citrulline modulate muscle function in malnourished aged rats. Amino Acids. doi:10.1007/s00726-011-0841-2

    Google Scholar 

  • Felgines C, Savanovitch C, Farges MC et al (1999) Protein metabolism in rats during long-term dietary restriction: influence of aging. JPEN J Parenter Enteral Nutr 23:32–37

    PubMed  Article  CAS  Google Scholar 

  • Fleury P, Eberhard R (1951) Determination of proteins by photometric, biuret method, according to the technique of Gornall. Ann Biol Clin (Paris) 9:453–466

    CAS  Google Scholar 

  • Godin J-P, Fay L-B, Hopfgartner G (2007) Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research. Mass Spectrom Rev 26:751–774. doi:10.1002/mas.20149

    PubMed  Article  CAS  Google Scholar 

  • Guillet C, Boirie Y, Walrand S (2004a) An integrative approach to in vivo protein synthesis measurement: from whole tissue to specific proteins. Curr Opin Clin Nutr Metab Care 7:531–538

    PubMed  Article  CAS  Google Scholar 

  • Guillet C, Prod’homme M, Balage M et al (2004b) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. Faseb J 18:1586–1587

    PubMed  CAS  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50:428–558

    PubMed  CAS  Google Scholar 

  • Jourdan M, Nair SP, Ford C et al (2008) Citrulline stimulates muscle protein synthesis at the post-absorptive state in healthy subjects fed a low-protein diet. Clin Nutr 3:11

    Google Scholar 

  • Le Plénier S, Walrand S, Noirt R et al (2012) Effects of leucine and citrulline versus non-essential amino acids on muscle protein synthesis in fasted rat: a common activation pathway? Amino Acids 43:1171–1178. doi:10.1007/s00726-011-1172-z

    PubMed  Google Scholar 

  • Leenders M, Van Loon LJC (2011) Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev 69:675–689. doi:10.1111/j.1753-4887.2011.00443.x

    PubMed  Article  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357. doi:10.1007/s00726-010-0598-z

    PubMed  Article  CAS  Google Scholar 

  • Moinard C, Cynober L (2007) Citrulline: a new player in the control of nitrogen homeostasis. J Nutr 137:1621S–1625S

    PubMed  CAS  Google Scholar 

  • Moinard C, Le Plenier S, Cynober L, Raynaud-Simon A (2009) Long-term effect of citrulline supplementation in healthy aged rats: effect on body composition. Clin Nutr suppl. 4:12 (abstract)

    Google Scholar 

  • Neveux N, David P, Cynober L (2004) Measurement of amino acid concentration in biological fluids and tissues using ion-exchange chromatography. Metabolic and therapeutic aspects of amino acids in clinical nutrition. CRC Press, Boca Raton, pp 17–28

    Google Scholar 

  • Nicastro H, Artioli GG, dos S Costa A et al (2011) An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 40:287–300. doi:10.1007/s00726-010-0636-x

    PubMed  Article  CAS  Google Scholar 

  • Osowska S, Moinard C, Neveux N et al (2004) Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut 53:1781–1786

    PubMed  Article  CAS  Google Scholar 

  • Osowska S, Duchemann T, Walrand S et al (2006) Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab 291:E582–E586

    PubMed  Article  CAS  Google Scholar 

  • Osowska S, Neveux N, Nakib S, et al. (2008) Impairment of arginine metabolism in rats after massive intestinal resection: effect of parenteral nutrition supplemented with citrulline versus arginine. Clin Sci (Lond) 115:159–166. doi:10.1042/CS20070451

    Article  CAS  Google Scholar 

  • Stipanuk MH (2007) Leucine and protein synthesis: mTOR and beyond. Nutr Rev 65:122–129

    PubMed  Article  Google Scholar 

  • Verhoeven S, Vanschoonbeek K, Verdijk LB et al (2009) Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr 89:1468–1475. doi:10.3945/ajcn.2008.26668

    PubMed  Article  CAS  Google Scholar 

  • Vianna D, Resende GFT, Torres-Leal FL et al (2012) Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition 28:182–189. doi:10.1016/j.nut.2011.04.004

    PubMed  Article  CAS  Google Scholar 

  • Vignaud A, Noirez P, Besse S et al (2003) Recovery of slow skeletal muscle after injury in the senescent rat. Exp Gerontol 38:529–537

    PubMed  Article  CAS  Google Scholar 

  • Wycherley TP, Buckley JD, Noakes M et al (2012) Comparison of the effects of weight loss from a high-protein versus standard-protein energy-restricted diet on strength and aerobic capacity in overweight and obese men. Eur J Nutr. doi:10.1007/s00394-012-0338-0

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Nestec Ltd and by the French Ministry of Research and Technology (EA 4466). LC, CM and SLP are shareholders of Citrage®. LC is a consultant for Inneov®. The authors also thank Paris-Sorbonne University Pharmacotechnic laboratory, and Morgane Guillard, Rita Rodrigues and Caroline Kerchi for their expert technical assistance.

Conflict of interest

No other financial or contractual agreements might cause conflicts of interest or be perceived as causing conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ventura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ventura, G., Noirez, P., Breuillé, D. et al. Effect of citrulline on muscle functions during moderate dietary restriction in healthy adult rats. Amino Acids 45, 1123–1131 (2013). https://doi.org/10.1007/s00726-013-1564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1564-3

Keywords

  • Dietary restriction
  • Muscle mass
  • Slimming diet
  • Protein synthesis