Skip to main content

Advertisement

Log in

Transport of asymmetric dimethylarginine (ADMA) by cationic amino acid transporter 2 (CAT2), organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Asymmetric dimethylarginine (ADMA), inhibiting the nitric oxide (NO) synthesis from l-arginine, is a known cardiovascular risk factor. Our aim was to investigate if ADMA and/or l-arginine are substrates of the human cationic amino acid transporters 2A (CAT2A, SLC7A2A) and 2B (CAT2B, SLC7A2B), the organic cation transporter 2 (OCT2, SLC22A2), and the multidrug and toxin extrusion protein 1 (MATE1, SLC47A1). We systematically investigated the kinetics of ADMA and l-arginine transport in human embryonic kidney (HEK293) cells stably overexpressing CAT2A, CAT2B, OCT2, or MATE1. Vector-only transfected HEK293 cells served as controls. Compared to vector control cells, uptake of ADMA and l-arginine was significantly higher (p < 0.05) in cells expressing CAT2B and OCT2 at almost all investigated concentrations, while cells expressing CAT2A only showed a significant uptake at concentrations above 300 μM. Uptake of MATE1 overexpressing cells was significantly (p < 0.05) higher at pH 7.8 and 8.2 than controls. Apparent V max values (nmol mg protein−1 min−1) for cellular uptake of ADMA and l-arginine were ≈11.8 ± 1.2 and 19.5 ± 0.7 for CAT2A, ≈14.3 ± 1.0 and 15.3 ± 0.4 for CAT2B, and 6.3 ± 0.3 and >50 for OCT2, respectively. Apparent K m values (μmol/l) for cellular uptake of ADMA and l-arginine were ≈3,033 ± 675 and 3,510 ± 419 for CAT2A, ≈4,021 ± 532 and 952 ± 92 for CAT2B, and 967 ± 143 and >10,000 for OCT2, respectively. ADMA and l-arginine are substrates of human CAT2A, CAT2B, OCT2 and MATE1. Transport kinetics of CAT2A, CAT2B, and OCT2 indicate a low affinity, high capacity transport, which may be relevant for renal and hepatic elimination of ADMA or l-arginine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGXT:

Alanine-glyoxylate aminotransferase

ADMA:

Asymmetric dimethylarginine

CAT:

Cationic amino acid transporter

CI:

Confidence interval

DDAH:

Dimethylarginine dimethylaminohydrolase

HEK:

Human embryonic kidney cells 293

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

V max :

Maximum transport velocity

MATE:

Multidrug and toxin extrusion protein

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OCT:

Organic cation transporter

MES:

2-(N-morpholino)ethanesulfonic acid

MPP+ :

1-Methyl-4-phenylpyridinium

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

TBS:

Tris-buffered saline

y+LAT:

y+L amino acid transporters

References

  • Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R, Vallance P (2003) Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23(8):1455–1459. doi:10.1161/01.ATV.0000081742.92006.59

    Article  PubMed  CAS  Google Scholar 

  • Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277(25):22491–22496. doi:10.1074/jbc.M203114200

    Article  PubMed  CAS  Google Scholar 

  • Baydoun AR, Emery PW, Pearson JD, Mann GE (1990) Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem Biophys Res Commun 173(3):940–948. doi:10.1016/S0006-291X(05)80876-9

    Article  PubMed  CAS  Google Scholar 

  • Böger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, Schulze F, Xanthakis V, Benndorf RA, Vasan RS (2009) Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119(12):1592–1600. doi:10.1161/CIRCULATIONAHA.108.838268

    Article  PubMed  Google Scholar 

  • Bronk JR, Fisher RB (1956) The role of ornithine and citrulline in urea synthesis. Biochem J 64(1):111–118

    PubMed  CAS  Google Scholar 

  • Cardounel AJ, Cui H, Samouilov A, Johnson W, Kearns P, Tsai AL, Berka V, Zweier JL (2007) Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 282(2):879–887. doi:10.1074/jbc.M603606200

    Article  PubMed  CAS  Google Scholar 

  • Carnegie PR, Fellows FC, Symington GR (1977) Urinary excretion of methylarginine in human disease. Metabolism 26(5):531–537

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Albritton LM, Kim JW, Cunningham JM (1993) Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem 268(10):7538–7544

    PubMed  CAS  Google Scholar 

  • Closs EI, Basha FZ, Habermeier A, Förstermann U (1997a) Interference of l-arginine analogues with l-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1(1):65–73. doi:10.1006/niox.1996.0106

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997b) Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36(21):6462–6468. doi:10.1021/bi962829p

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Scheld JS, Sharafi M, Förstermann U (2000) Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57(1):68–74

    PubMed  CAS  Google Scholar 

  • Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membr Biol 213(2):67–77. doi:10.1007/s00232-006-0875-7

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Ostad MA, Simon A, Warnholtz A, Jabs A, Habermeier A, Daiber A, Förstermann U, Münzel T (2012) Impairment of the extrusion transporter for asymmetric dimethyl-l-arginine: a novel mechanism underlying vasospastic angina. Biochem Biophys Res Commun 423(2):218–223. doi:10.1016/j.bbrc.2012.05.044

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, König J, Buchholz JK, Spring H, Leier I, Keppler D (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55(5):929–937

    PubMed  CAS  Google Scholar 

  • De Nicola L, Blantz RC, Gabbai FB (1992) Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest 89(4):1248–1256. doi:10.1172/JCI115709

    Article  PubMed  Google Scholar 

  • Diaz-Perez F, Radojkovic C, Aguilera V, Veas C, Gonzalez M, Lamperti L, Escudero C, Aguayo C (2012) l-Arginine transport and nitric oxide synthesis in human endothelial progenitor cells. J Cardiovasc Pharmacol 60(5):439–449. doi:10.1097/FJC.0b013e318269ae2f

    Article  PubMed  CAS  Google Scholar 

  • Dioguardi FS (2011) To give or not to give? Lessons from the arginine paradox. J Nutrigenet Nutrigenomics 4(2):90–98

    Article  PubMed  CAS  Google Scholar 

  • Fliser D, Kronenberg F, Kielstein JT, Morath C, Bode-Böger SM, Haller H, Ritz E (2005) Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 16(8):2456–2461. doi:10.1681/ASN.2005020179

    Article  PubMed  CAS  Google Scholar 

  • Hingorani AD (2001) Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis 154(3):521–527

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Wang H, Zhang Z, Zhang W, Wu YN, Dechant E, North RA, Kabat D (1994) Control of cationic amino acid transport and retroviral receptor functions in a membrane protein family. J Biol Chem 269(22):15445–15450

    PubMed  CAS  Google Scholar 

  • Kielstein JT, Impraim B, Simmel S, Bode-Böger SM, Tsikas D, Frölich JC, Hoeper MM, Haller H, Fliser D (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109(2):172–177. doi:10.1161/01.CIR.0000105764.22626.B1

    Article  PubMed  CAS  Google Scholar 

  • Kitiyakara C, Chabrashvili T, Jose P, Welch WJ, Wilcox CS (2001) Effects of dietary salt intake on plasma arginine. Am J Physiol Regul Integr Comp Physiol 280(4):R1069–R1075

    PubMed  CAS  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24(7):1227–1251. doi:10.1007/s11095-007-9254-z

    Article  PubMed  CAS  Google Scholar 

  • König J, Zolk O, Singer K, Hoffmann C, Fromm MF (2011) Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 163(3):546–555. doi:10.1111/j.1476-5381.2010.01052.x

    Article  PubMed  Google Scholar 

  • Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83(1):183–252. doi:10.1152/physrev.00022.2002

    PubMed  CAS  Google Scholar 

  • Mateus A, Matsson P, Artursson P (2013) Rapid measurement of intracellular unbound drug concentrations. Mol Pharm. doi:10.1021/mp4000822

    PubMed  Google Scholar 

  • Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB (2010) Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol 298(4):F997–F1005. doi:10.1152/ajprenal.00431.2009

    Article  PubMed  CAS  Google Scholar 

  • Müller F, König J, Glaeser H, Schmidt I, Zolk O, Fromm MF, Maas R (2011) Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother 55(7):3091–3098. doi:10.1128/AAC.01835-10

    Article  PubMed  Google Scholar 

  • Nicholson B, Manner CK, Kleeman J, MacLeod CL (2001) Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem 276(19):15881–15885. doi:10.1074/jbc.M010030200

    Article  PubMed  CAS  Google Scholar 

  • Nickovic V, Nikolic J, Djindjic N, Ilic M, Nickovic J, Mladenovic D, Krstic N (2012) Diagnostical significance of dimethylarginine in the development of hepatorenal syndrome in patients with alcoholic liver cirrhosis. Vojnosanit Pregl 69(8):686–691

    Article  PubMed  Google Scholar 

  • Nijveldt RJ, Van Leeuwen PA, Van Guldener C, Stehouwer CD, Rauwerda JA, Teerlink T (2002) Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol Dial Transplant 17(11):1999–2002

    Article  PubMed  CAS  Google Scholar 

  • Ohta KY, Imamura Y, Okudaira N, Atsumi R, Inoue K, Yuasa H (2009) Functional characterization of multidrug and toxin extrusion protein 1 as a facilitative transporter for fluoroquinolones. J Pharmacol Exp Ther 328(2):628–634. doi:10.1124/jpet.108.142257

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA 102(50):17923–17928. doi:10.1073/pnas.0506483102

    Article  PubMed  CAS  Google Scholar 

  • Palm F, Friederich M, Carlsson PO, Hansell P, Teerlink T, Liss P (2008) Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 294(1):F30–F37. doi:10.1152/ajprenal.00166.2007

    Article  PubMed  CAS  Google Scholar 

  • Perkins CP, Mar V, Shutter JR, del Castillo J, Danilenko DM, Medlock ES, Ponting IL, Graham M, Stark KL, Zuo Y, Cunningham JM, Bosselman RA (1997) Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev 11(7):914–925

    Article  PubMed  CAS  Google Scholar 

  • Pietig G, Mehrens T, Hirsch JR, Cetinkaya I, Piechota H, Schlatter E (2001) Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 276(36):33741–33746. doi:10.1074/jbc.M104617200

    Article  PubMed  CAS  Google Scholar 

  • Rodionov RN, Murry DJ, Vaulman SF, Stevens JW, Lentz SR (2010) Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J Biol Chem 285(8):5385–5391. doi:10.1074/jbc.M109.091280

    Article  PubMed  CAS  Google Scholar 

  • Ronden RA, Houben AJ, Teerlink T, Bakker JA, Bierau J, Stehouwer CD, De Leeuw PW, Kroon AA (2012) Reduced renal plasma clearance does not explain increased plasma asymmetric dimethylarginine in hypertensive subjects with mild to moderate renal insufficiency. Am J Physiol Renal Physiol 303(1):F149–F156. doi:10.1152/ajprenal.00045.2012

    Article  PubMed  CAS  Google Scholar 

  • Siroen MP, Warle MC, Teerlink T, Nijveldt RJ, Kuipers EJ, Metselaar HJ, Tilanus HW, Kuik DJ, van der Sijp JR, Meijer S, van der Hoven B, van Leeuwen PA (2004) The transplanted liver graft is capable of clearing asymmetric dimethylarginine. Liver Transpl 10(12):1524–1530. doi:10.1002/lt.20286

    Article  PubMed  Google Scholar 

  • Siroen MP, van der Sijp JR, Teerlink T, van Schaik C, Nijveldt RJ, van Leeuwen PA (2005) The human liver clears both asymmetric and symmetric dimethylarginine. Hepatology 41(3):559–565. doi:10.1002/hep.20579

    Article  PubMed  CAS  Google Scholar 

  • Strobel J, Mieth M, Endress B, Auge D, König J, Fromm MF, Maas R (2012) Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). J Mol Cell Cardiol 53(3):392–400. doi:10.1016/j.yjmcc.2012.06.002

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR, Clarke S, Herschman HR (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275(11):7723–7730

    Article  PubMed  CAS  Google Scholar 

  • Teerlink T, Luo Z, Palm F, Wilcox CS (2009) Cellular ADMA: regulation and action. Pharmacol Res 60(6):448–460. doi:10.1016/j.phrs.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  • Tojo A, Welch WJ, Bremer V, Kimoto M, Kimura K, Omata M, Ogawa T, Vallance P, Wilcox CS (1997) Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int 52(6):1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Fröhlich JC (2000) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478(1–2):1–3

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Terada T, Asaka J, Ueba M, Katsura T, Inui K (2007) Oppositely directed H+ gradient functions as a driving force of rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol 292(2):F593–F598. doi:10.1152/ajprenal.00312.2006

    Article  PubMed  CAS  Google Scholar 

  • Vallance P, Leiper J (2004) Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 24(6):1023–1030. doi:10.1161/01.ATV.0000128897.54893.26

    Article  PubMed  CAS  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339(8793):572–575. doi:10.1016/0140-6736(92)90865-Z

    Article  PubMed  CAS  Google Scholar 

  • Visigalli R, Barilli A, Bussolati O, Sala R, Gazzola GC, Parolari A, Tremoli E, Simon A, Closs EI, Dall’Asta V (2007) Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells. Biochim Biophys Acta 1768(6):1479–1487. doi:10.1016/j.bbamem.2007.02.016

    Article  PubMed  CAS  Google Scholar 

  • White MF, Christensen HN (1982) The two-way flux of cationic amino acids across the plasma membrane of mammalian cells is largely explained by a single transport system. J Biol Chem 257(17):10069–10080

    PubMed  CAS  Google Scholar 

  • Winter TN, Elmquist WF, Fairbanks CA (2011) OCT2 and MATE1 provide bidirectional agmatine transport. Mol Pharm 8(1):133–142. doi:10.1021/mp100180a

    Article  PubMed  CAS  Google Scholar 

  • Zoccali C, Bode-Böger S, Mallamaci F, Benedetto F, Tripepi G, Malatino L, Cataliotti A, Bellanuova I, Fermo I, Frölich J, Böger R (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358(9299):2113–2117

    Article  PubMed  CAS  Google Scholar 

  • Zolk O, Solbach TF, König J, Fromm MF (2009) Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmiedebergs Arch Pharmacol 379(4):337–348. doi:10.1007/s00210-008-0369-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an intramural grant of the Universität Erlangen-Nürnberg to Renke Maas and in part by a grant of the Deutsche Forschungsgemeinschaft (Fr1298/5-1) to Martin Fromm. Joachim Strobel is supported by a scholarship of the Friedrich-Ebert Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renke Maas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobel, J., Müller, F., Zolk, O. et al. Transport of asymmetric dimethylarginine (ADMA) by cationic amino acid transporter 2 (CAT2), organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1). Amino Acids 45, 989–1002 (2013). https://doi.org/10.1007/s00726-013-1556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1556-3

Keywords

Navigation