Amino Acids

, Volume 46, Issue 1, pp 89–100 | Cite as

Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects

  • Chaekyun KimEmail author
  • Young-Nam Cha
Review Article


Taurine is one of the most abundant non-essential amino acid in mammals and has many physiological functions in the nervous, cardiovascular, renal, endocrine, and immune systems. Upon inflammation, taurine undergoes halogenation in phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. In the activated neutrophils, TauCl is produced by reaction with hypochlorite (HOCl) generated by the halide-dependent myeloperoxidase system. TauCl is released from activated neutrophils following their apoptosis and inhibits the production of inflammatory mediators such as, superoxide anion, nitric oxide, tumor necrosis factor-α, interleukins, and prostaglandins in inflammatory cells at inflammatory tissues. Furthermore, TauCl increases the expressions of antioxidant proteins, such as heme oxygenase 1, peroxiredoxin, thioredoxin, glutathione peroxidase, and catalase in macrophages. Thus, a central role of TauCl produced by activated neutrophils is to trigger the resolution of inflammation and protect macrophages and surrounding tissues from being damaged by cytotoxic reactive oxygen metabolites overproduced during inflammation. This is achieved by attenuating further production of proinflammatory cytokines and reactive oxygen metabolites and also by increasing the levels of antioxidant proteins that are able to scavenge and diminish the production of cytotoxic oxygen metabolites. These findings suggest that TauCl released from activated neutrophils may be involved in the recovery processes of cells affected by inflammatory oxidative stresses and thus TauCl could be used as a potential physiological agent to control pathogenic symptoms of chronic inflammatory diseases.


Taurine Taurine chloramine Neutrophils Inflammation Antioxidant 



We thank Dr. Mary C. Dinauer (Washington University, St. Louis) for the gift of PLB-985 and X-PLB cells, Dr. Young-June Kim (Indiana University, Indianapolis) for critical review of the manuscript, and Shuyu Piao (Inha University) for technical assistance. The preparation of this manuscript was supported by a grant from NRF funded by the Korea government MEST (2012R1A1A3007097) and by a research grant from Inha University.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255PubMedGoogle Scholar
  2. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476PubMedGoogle Scholar
  3. Balla G, Vercellotti GM, Muller-Eberhard U, Eaton J, Jacob HS (1991) Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Investig 64:648–655PubMedGoogle Scholar
  4. Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167:2275–2281PubMedGoogle Scholar
  5. Bhattacharya SK, Sarkar MK (1986) Effect of some centrally administered putative amino acid neurotransmitters on carrageenan-induced paw oedema in rats. J Pharm Pharmacol 38:144–146PubMedCrossRefGoogle Scholar
  6. Choi HS, Cha YN, Kim C (2006) Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox). Int Immunopharmacol 6:1431–1440PubMedCrossRefGoogle Scholar
  7. Chorazy M, Kontny E, Marcinkiewicz J, Maslinski W (2002) Taurine chloramine modulates cytokine production by human peripheral blood mononuclear cells. Amino Acids 23:407–413PubMedCrossRefGoogle Scholar
  8. Chorazy-Massalska M, Kontny E, Kornatka A, Rell-Bakalarska M, Marcinkiewicz J, Maslinski W (2004) The effect of taurine chloramine on pro-inflammatory cytokine production by peripheral blood mononuclear cells isolated from rheumatoid arthritis and osteoarthritis patients. Clin Exp Rheumatol 22:692–698PubMedGoogle Scholar
  9. Davies JM, Horwitz DA, Davies KJ (1994) Inhibition of collagenase activity by N-chlorotaurine, a product of activated neutrophils. Arthritis Rheum 37:424–427PubMedCrossRefGoogle Scholar
  10. Dinauer MC (2003) Regulation of neutrophil function by Rac GTPases. Curr Opin Hematol 10:8–15PubMedCrossRefGoogle Scholar
  11. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913PubMedCrossRefGoogle Scholar
  12. Eitzinger C, Ehrlenbach S, Lindner H, Kremser L, Gottardi W, Debabov D, Anderson M, Nagl M, Orth D (2012) N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli. PLoS ONE 7:e47105PubMedCentralPubMedCrossRefGoogle Scholar
  13. Emerson DK, McCormick ML, Schmidt JA, Knudson CM (2005) Taurine monochloramine activates a cell death pathway involving Bax and Caspase-9. J Biol Chem 280:3233–3241PubMedCrossRefGoogle Scholar
  14. Englert RP, Shacter E (2002) Distinct modes of cell death induced by different reactive oxygen species: amino acyl chloramines mediate hypochlorous acid-induced apoptosis. J Biol Chem 277:20518–20526PubMedCrossRefGoogle Scholar
  15. Fukuda K, Hirai Y, Yoshida H, Nakajima T, Usui T (1982) Free amino acid content of lymphocytes and granulocytes compared. Clin Chem 28:1758–1761PubMedGoogle Scholar
  16. Gabriel SE (2001) The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 27:269–281PubMedCrossRefGoogle Scholar
  17. Gottardi W, Nagl M (2002) Chemical properties of N-chlorotaurine sodium, a key compound in the human defence system. Arch Pharm (Weinheim) 335:411–421CrossRefGoogle Scholar
  18. Gottardi W, Nagl M (2005) Chlorine covers on living bacteria: the initial step in antimicrobial action of active chlorine compounds. J Antimicrob Chemother 55:475–482PubMedCrossRefGoogle Scholar
  19. Gottardi W, Nagl M (2010) N-chlorotaurine, a natural antiseptic with outstanding tolerability. J Antimicrob Chemother 65:399–409PubMedCrossRefGoogle Scholar
  20. Gottardi W, Hagleitner M, Nagl M (2005) N,N-dichlorotaurine: chemical and bactericidal properties. Arch Pharm (Weinheim) 338:473–483CrossRefGoogle Scholar
  21. Grisham MB, Jefferson MM, Melton DF, Thomas EL (1984) Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines. J Biol Chem 259:10404–10413PubMedGoogle Scholar
  22. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416PubMedCrossRefGoogle Scholar
  23. Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Haussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. Faseb J 16:231–233PubMedGoogle Scholar
  24. Holland R, Hawkins AE, Eggler AL, Mesecar AD, Fabris D, Fishbein JC (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chem Res Toxicol 21:2051–2060PubMedCrossRefGoogle Scholar
  25. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199PubMedCrossRefGoogle Scholar
  26. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  27. Ignarro LJ (1996) Physiology and pathophysiology of nitric oxide. Kidney Int Suppl 55:S2–S5PubMedGoogle Scholar
  28. Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y (2002) Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem 277:24049–24056PubMedCrossRefGoogle Scholar
  29. Kang IS, Kim C (2013) Taurine chloramine administered in vivo increases NRF2-regulated antioxidant enzyme expression in murine peritoneal macrophages. Adv Exp Med Biol 775:259–267PubMedCrossRefGoogle Scholar
  30. Kim JW, Kim C (2005) Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated through Ras-ERK-NF-kappaB. Biochem Pharmacol 70:1352–1360PubMedCrossRefGoogle Scholar
  31. Kim C, Park E, Quinn MR, Schuller-Levis G (1996) The production of superoxide anion and nitric oxide by cultured murine leukocytes and the accumulation of TNF-alpha in the conditioned media is inhibited by taurine chloramine. Immunopharmacology 34:89–95PubMedCrossRefGoogle Scholar
  32. Kim C, Chung JK, Jeong JM, Chang YS, Lee YJ, Kim YJ, Lee MC, Koh CS, Kim BK (1998) Uptake of taurine and taurine chloramine in murine macrophages and their distribution in mice with experimental inflammation. Adv Exp Med Biol 442:169–176PubMedCrossRefGoogle Scholar
  33. Kim KS, Park EK, Ju SM, Jung HS, Bang JS, Kim C, Lee YA, Hong SJ, Lee SH, Yang HI, Yoo MC (2007) Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1beta stimulated fibroblast-like synoviocytes. Arthritis Res Ther 9:R80PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kim C, Jang JS, Cho MR, Agarawal SR, Cha YN (2010a) Taurine chloramine induces heme oxygenase-1 expression via Nrf2 activation in murine macrophages. Int Immunopharmacol 10:440–446PubMedCrossRefGoogle Scholar
  35. Kim KS, Choi HM, Oh DH, Kim C, Jeong JS, Yoo MC, Yang HI (2010b) Effect of taurine chloramine on the production of matrix metalloproteinases (MMPs) in adiponectin- or IL-1beta-stimulated fibroblast-like synoviocytes. J Biomed Sci 17(Suppl 1):S27PubMedCrossRefGoogle Scholar
  36. Kim BS, Cho IS, Park SY, Schuller-Levis G, Levis W, Park E (2011) Taurine chloramine inhibits NO and TNF-alpha production in zymosan plus interferon-gamma activated RAW 264.7 cells. J Drugs Dermatol 10:659–665PubMedGoogle Scholar
  37. Kim BS, Spinner DS, Kascsak RJ, Park SY, Cho IS, Schuller-Levis G, Park E (2013) Inflammatory mediators are inhibited by a taurine metabolite in CpG oligodeoxynucleotide and IFN-r activated macrophage cell line. J Drugs Dermatol 12:551–557PubMedGoogle Scholar
  38. Klamt F, Shacter E (2005) Taurine chloramine, an oxidant derived from neutrophils, induces apoptosis in human B lymphoma cells through mitochondrial damage. J Biol Chem 280:21346–21352PubMedCrossRefGoogle Scholar
  39. Kontny E, Grabowska A, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maslinski W (1999) Taurine chloramine inhibition of cell proliferation and cytokine production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum 42:2552–2560PubMedCrossRefGoogle Scholar
  40. Kontny E, Szczepanska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maslinski W (2000) The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum 43:2169–2177PubMedCrossRefGoogle Scholar
  41. Kontny E, Wojtecka LE, Rell-Bakalarska K, Dziewczopolski W, Maslinski W, Maslinski S (2002) Impaired generation of taurine chloramine by synovial fluid neutrophils of rheumatoid arthritis patients. Amino Acids 23:415–418PubMedCrossRefGoogle Scholar
  42. Kontny E, Maslinski W, Marcinkiewicz J (2003a) Anti-inflammatory activities of taurine chloramine: implication for immunoregulation and pathogenesis of rheumatoid arthritis. Adv Exp Med Biol 526:329–340PubMedCrossRefGoogle Scholar
  43. Kontny E, Rudnicka W, Kowalczewski J, Marcinkiewicz J, Maslinski W (2003b) Selective inhibition of cyclooxygenase 2-generated prostaglandin E2 synthesis in rheumatoid arthritis synoviocytes by taurine chloramine. Arthritis Rheum 48:1551–1555PubMedCrossRefGoogle Scholar
  44. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188PubMedCrossRefGoogle Scholar
  45. Kwasny-Krochin B, Bobek M, Kontny E, Gluszko P, Biedron R, Chain BM, Maslinski W, Marcinkiewicz J (2002) Effect of taurine chloramine, the product of activated neutrophils, on the development of collagen-induced arthritis in DBA 1/J mice. Amino Acids 23:419–426PubMedCrossRefGoogle Scholar
  46. Levis W, Schuller-Levis GB, Park E (2003) Deficient tumor necrosis factor-alpha production in lipoarabinomannan activated macrophages from toll-like receptor-4 deficient mice: implication for mycobacterial susceptibility. Int J Lepr Other Mycobact Dis 71:1–9PubMedCrossRefGoogle Scholar
  47. Liu Y, Quinn MR (2002) Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett 80:27–32PubMedCrossRefGoogle Scholar
  48. Liu Y, Tonna-DeMasi M, Park E, Schuller-Levis G, Quinn MR (1998) Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res Mol Brain Res 59:189–195PubMedCrossRefGoogle Scholar
  49. Liu Y, Schuller-Levis G, Quinn MR (1999) Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 production is inhibited by taurine chloramine in rat C6 glioma cells. Immunol Lett 70:9–14PubMedCrossRefGoogle Scholar
  50. Marcinkiewicz J, Kontny E (2012) Taurine and inflammatory diseases. Amino Acids (Epub ahead of print)Google Scholar
  51. Marcinkiewicz J, Grabowska A, Bereta J, Stelmaszynska T (1995) Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J Leukoc Biol 58:667–674PubMedGoogle Scholar
  52. Marcinkiewicz J, Grabowska A, Bereta J, Bryniarski K, Nowak B (1998a) Taurine chloramine down-regulates the generation of murine neutrophil inflammatory mediators. Immunopharmacology 40:27–38PubMedCrossRefGoogle Scholar
  53. Marcinkiewicz J, Grabowska A, Chain BM (1998b) Modulation of antigen-specific T-cell activation in vitro by taurine chloramine. Immunology 94:325–330PubMedCrossRefGoogle Scholar
  54. Marcinkiewicz J, Nowak B, Grabowska A, Bobek M, Petrovska L, Chain B (1999) Regulation of murine dendritic cell functions in vitro by taurine chloramine, a major product of the neutrophil myeloperoxidase-halide system. Immunology 98:371–378PubMedCrossRefGoogle Scholar
  55. Marcinkiewicz J, Chain B, Nowak B, Grabowska A, Bryniarski K, Baran J (2000) Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res 49:280–289PubMedCrossRefGoogle Scholar
  56. Marcinkiewicz J, Mak M, Bobek M, Biedron R, Bialecka A, Koprowski M, Kontny E, Maslinski W (2005) Is there a role of taurine bromamine in inflammation? interactive effects with nitrite and hydrogen peroxide. Inflamm Res 54:42–49PubMedCrossRefGoogle Scholar
  57. Martinez-Losa M, Cortijo J, Piqueras L, Sanz MJ, Morcillo EJ (2009) Taurine chloramine inhibits functional responses of human eosinophils in vitro. Clin Exp Allergy 39:537–546PubMedCrossRefGoogle Scholar
  58. Martini C, Hammerer-Lercher A, Zuck M, Jekle A, Debabov D, Anderson M, Nagl M (2012) Antimicrobial and anticoagulant activities of N-chlorotaurine, N,N-dichloro-2,2-dimethyltaurine, and N-monochloro-2,2-dimethyltaurine in human blood. Antimicrob Agents Chemother 56:1979–1984PubMedCentralPubMedCrossRefGoogle Scholar
  59. Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4:615–624PubMedCrossRefGoogle Scholar
  60. Nagl M, Hess MW, Pfaller K, Hengster P, Gottardi W (2000) Bactericidal activity of micromolar N-chlorotaurine: evidence for its antimicrobial function in the human defense system. Antimicrob Agents Chemother 44:2507–2513PubMedCentralPubMedCrossRefGoogle Scholar
  61. Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277–291PubMedCrossRefGoogle Scholar
  62. Neher A, Nagl M, Appenroth E, Gstottner M, Wischatta M, Reisigl F, Schindler M, Ulmer H, Stephan K (2004) Acute otitis externa: efficacy and tolerability of N-chlorotaurine, a novel endogenous antiseptic agent. Laryngoscope 114:850–854PubMedCrossRefGoogle Scholar
  63. Neher A, Gstottner M, Nagl M, Scholtz A, Gunkel AR (2007) N-chlorotaurine–a new safe substance for postoperative ear care. Auris Nasus Larynx 34:19–22PubMedCrossRefGoogle Scholar
  64. Ogino T, Kobuchi H, Sen CK, Roy S, Packer L, Maguire JJ (1997) Monochloramine inhibits phorbol ester-inducible neutrophil respiratory burst activation and T cell interleukin-2 receptor expression by inhibiting inducible protein kinase C activity. J Biol Chem 272:26247–26252PubMedCrossRefGoogle Scholar
  65. Olszanecki R, Marcinkiewicz J (2004) Taurine chloramine and taurine bromamine induce heme oxygenase-1 in resting and LPS-stimulated J774.2 macrophages. Amino Acids 27:29–35PubMedCrossRefGoogle Scholar
  66. Olszanecki R, Kurnyta M, Biedron R, Chorobik P, Bereta M, Marcinkiewicz J (2008) The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramine and taurine bromamine in J774.2 macrophages. Amino Acids 35:359–364PubMedCrossRefGoogle Scholar
  67. Park E, Quinn MR, Wright CE, Schuller-Levis G (1993) Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol 54:119–124PubMedGoogle Scholar
  68. Park E, Schuller-Levis G, Quinn MR (1995) Taurine chloramine inhibits production of nitric oxide and TNF-alpha in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J Immunol 154:4778–4784PubMedGoogle Scholar
  69. Park E, Schuller-Levis G, Jia JH, Quinn MR (1997) Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS mRNA. J Leukoc Biol 61:161–166PubMedGoogle Scholar
  70. Park E, Alberti J, Quinn MR, Schuller-Levis G (1998) Taurine chloramine inhibits the production of superoxide anion, IL-6 and IL-8 in activated human polymorphonuclear leukocytes. Adv Exp Med Biol 442:177–182PubMedCrossRefGoogle Scholar
  71. Park E, Levis WR, Quinn MR, Park SY, Schuller-Levis GB (2000a) Regulation of nitric oxide induced by mycobacterial lipoarabinomannan in murine macrophages: effects of interferon-beta and taurine-chloramine. Int J Lepr Other Mycobact Dis 68:444–451PubMedGoogle Scholar
  72. Park E, Quinn MR, Schuller-Levis G (2000b) Taurine chloramine attenuates the hydrolytic activity of matrix metalloproteinase-9 in LPS-activated murine peritoneal macrophages. Adv Exp Med Biol 483:389–398PubMedCrossRefGoogle Scholar
  73. Park E, Jia J, Quinn MR, Schuller-Levis G (2002) Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin Immunol 102:179–184PubMedCrossRefGoogle Scholar
  74. Pero RW, Sheng Y, Olsson A, Bryngelsson C, Lund-Pero M (1996) Hypochlorous acid/N-chloramines are naturally produced DNA repair inhibitors. Carcinogenesis 17:13–18PubMedCrossRefGoogle Scholar
  75. Piao S, Cha YN, Kim C (2011) Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants. J Clin Biochem Nutr 49:50–56PubMedCentralPubMedCrossRefGoogle Scholar
  76. Pilz M, Holinka J, Vavken P, Marian B, Krepler P (2012) Taurine chloramine induces apoptosis in human osteosarcoma cell lines. J Orthop Res 30:2046–2051PubMedCrossRefGoogle Scholar
  77. Quinn MR, Park E, Schuller-Levis G (1996) Taurine chloramine inhibits prostaglandin E2 production in activated RAW 264.7 cells by post-transcriptional effects on inducible cyclooxygenase expression. Immunol Lett 50:185–188PubMedCrossRefGoogle Scholar
  78. Quinn MR, Barua M, Liu Y, Serban V (2003) Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages; a tale of two pathways: part I, NF-kappaB signaling. Adv Exp Med Biol 526:341–348PubMedCrossRefGoogle Scholar
  79. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202PubMedCrossRefGoogle Scholar
  80. Schuller-Levis GB, Levis WR, Ammazzalorso M, Nosrati A, Park E (1994) Mycobacterial lipoarabinomannan induces nitric oxide and tumor necrosis factor alpha production in a macrophage cell line: down regulation by taurine chloramine. Infect Immun 62:4671–4674PubMedCentralPubMedGoogle Scholar
  81. Schwienbacher M, Treml B, Pinna A, Geiger R, Reinstadler H, Pircher I, Schmidl E, Willomitzer C, Neumeister J, Pilch M, Hauer M, Hager T, Sergi C, Scholl-Burgi S, Giese T, Lockinger A, Nagl M (2011) Tolerability of inhaled N-chlorotaurine in an acute pig streptococcal lower airway inflammation model. BMC Infect Dis 11:231PubMedCentralPubMedCrossRefGoogle Scholar
  82. Son M, Kim HK, Kim WB, Yang J, Kim BK (1996) Protective effect of taurine on indomethacin-induced gastric mucosal injury. Adv Exp Med Biol 403:147–155PubMedCrossRefGoogle Scholar
  83. Son M, Ko JI, Kim WB, Kang HK, Kim BK (1998) Taurine can ameliorate inflammatory bowel disease in rats. Adv Exp Med Biol 442:291–298PubMedCrossRefGoogle Scholar
  84. Srisook K, Cha YN (2004) Biphasic induction of heme oxygenase-1 expression in macrophages stimulated with lipopolysaccharide. Biochem Pharmacol 68:1709–1720PubMedCrossRefGoogle Scholar
  85. Sun Jang J, Piao S, Cha YN, Kim C (2009) Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr 45:37–43PubMedCentralPubMedCrossRefGoogle Scholar
  86. Tallan HH, Jacobson E, Wright CE, Schneidman K, Gaull GE (1983) Taurine uptake by cultured human lymphoblastoid cells. Life Sci 33:1853–1860PubMedCrossRefGoogle Scholar
  87. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755PubMedCrossRefGoogle Scholar
  88. Teuchner B, Eitzinger C, Lutz M, Hager T, Schmid E, Bechrakis NE, Zuck M, Jekle A, Debabov D, Anderson M, Nagl M (2012) N-chlorotaurine and its analogues N,N-dichloro-2,2-dimethyltaurine and N-monochloro-2,2-dimethyltaurine are safe and effective bactericidal agents in ex vivo corneal infection models. Acta Ophthalmol 90:e632–e637PubMedCrossRefGoogle Scholar
  89. Tiedemann F, Gmelin L (1827) Einige neue Bestandtheile der Galle des Ochsen. Ann Phys 85:326–337CrossRefGoogle Scholar
  90. Verdrengh M, Tarkowski A (2005) Inhibition of septic arthritis by local administration of taurine chloramine, a product of activated neutrophils. J Rheumatol 32:1513–1517PubMedGoogle Scholar
  91. Wang Q, Hyde DM, Giri SN (1992) Abatement of bleomycin-induced increases in vascular permeability, inflammatory cell infiltration, and fibrotic lesions in hamster lungs by combined treatment with taurine and niacin. Lab Invest 67:234–242PubMedGoogle Scholar
  92. Wang L, Belisle B, Bassiri M, Xu P, Debabov D, Celeri C, Alvarez N, Robson MC, Payne WG, Najafi R, Khosrovi B (2011a) Chemical characterization and biological properties of NVC-422, a novel, stable N-chlorotaurine analog. Antimicrob Agents Chemother 55:2688–2692PubMedCentralPubMedCrossRefGoogle Scholar
  93. Wang Y, Cha YN, Kim KS, Kim C (2011b) Taurine chloramine inhibits osteoclastogenesis and splenic lymphocyte proliferation in mice with collagen-induced arthritis. Eur J Pharmacol 668:325–330PubMedCrossRefGoogle Scholar
  94. Weiss SJ, Klein R, Slivka A, Wei M (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Investig 70:598–607PubMedCrossRefGoogle Scholar
  95. Wirleitner B, Neurauter G, Nagl M, Fuchs D (2004) Down-regulatory effect of N-chlorotaurine on tryptophan degradation and neopterin production in human PBMC. Immunol Lett 93:143–149PubMedCrossRefGoogle Scholar
  96. Witko V, Nguyen AT, Descamps-Latscha B (1992) Microtiter plate assay for phagocyte-derived taurine-chloramines. J Clin Lab Anal 6:47–53PubMedCrossRefGoogle Scholar
  97. Wojtecka-Lukasik E, Gujski M, Roguska K, Maslinska D, Maslinski S (2005) Taurine chloramine modifies adjuvant arthritis in rats. Inflamm Res 54(Suppl 1):S21–S22PubMedCrossRefGoogle Scholar
  98. Ximenes VF, Padovan CZ, Carvalho DA, Fernandes JR (2010) Oxidation of melatonin by taurine chloramine. J Pineal Res 49:115–122PubMedGoogle Scholar
  99. Ximenes VF, da Fonseca LM, de Almeida AC (2011) Taurine bromamine: a potent oxidant of tryptophan residues in albumin. Arch Biochem Biophys 507:315–322PubMedCrossRefGoogle Scholar
  100. Yazdanbakhsh M, Eckmann CM, Roos D (1987) Killing of schistosomula by taurine chloramine and taurine bromamine. Am J Trop Med Hyg 37:106–110PubMedGoogle Scholar
  101. Zhen L, King AA, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci USA 90:9832–9836PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Laboratory for Leukocyte Signaling Research, Department of Pharmacology and ToxicologyInha University School of MedicineIncheonKorea

Personalised recommendations