Skip to main content

Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects

Abstract

It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6–31.0 kg/m2). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = −0.31; p < 0.05). In addition, fasting (r = −0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = −0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.

This is a preview of subscription content, access via your institution.

Abbreviations

AGE:

Advanced glycation end product

HOMA-IR:

Homeostatic model of insulin resistance

RAGE:

Receptor for advanced glycation end products

IVGTT:

Intravenous glucose tolerance test

OGTT:

Oral glucose tolerance test

BMI:

Body mass index

References

  1. Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ (2005) Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci 1043:201–210

    CAS  PubMed  Article  Google Scholar 

  2. Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T, Morcos M, Sayed AA, Andrassy M, Schiekofer S, Schneider JG, Schulz JB, Heuss D, Neundorfer B, Dierl S, Huber J, Tritschler H, Schmidt AM, Schwaninger M, Haering HU, Schleicher E, Kasper M, Stern DM, Arnold B, Nawroth PP (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114(12):1741–1751

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, Niamba CN, Alt N, Somoza V, Lecerf JM (2010) A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr 91(5):1220–1226

    CAS  PubMed  Article  Google Scholar 

  4. Chiavaroli V, D’Adamo E, Giannini C, de Giorgis T, De Marco S, Chiarelli F, Mohn A (2012) Serum levels of receptors for advanced glycation end products in normal-weight and obese children born small and large for gestational age. Diabetes Care 35(6):1361–1363

    CAS  PubMed  Article  Google Scholar 

  5. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81(2):341–354

    CAS  PubMed  Google Scholar 

  6. Coughlan MT, Forbes JM (2011) Temporal increases in urinary carboxymethyllysine correlate with albuminuria development in diabetes. Am J Nephrol 34(1):9–17

    CAS  PubMed  Article  Google Scholar 

  7. Coughlan MT, Yap FY, Tong DC, Andrikopoulos S, Gasser A, Thallas-Bonke V, Webster DE, Miyazaki J, Kay TW, Slattery RM, Kaye DM, Drew BG, Kingwell BA, Fourlanos S, Groop PH, Harrison LC, Knip M, Forbes JM (2011) Advanced glycation end products are direct modulators of beta-cell function. Diabetes 60(10):2523–2532

    CAS  PubMed  Article  Google Scholar 

  8. Forbes JM, Soderlund J, Yap FY, Knip M, Andrikopoulos S, Ilonen J, Simell O, Veijola R, Sourris KC, Coughlan MT, Forsblom C, Slattery R, Grey ST, Wessman M, Yamamoto H, Bierhaus A, Cooper ME, Groop PH (2011) Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia 54(5):1032–1042

    CAS  PubMed  Article  Google Scholar 

  9. Forbes JM, Cowan SP, Andrikopoulos S, Morley AL, Ward LC, Walker KZ, Cooper ME, Coughlan MT (2013) Glucose homeostasis can be differentially modulated by varying individual components of a western diet. J Nutr Biochem

  10. Hagiwara S, Gohda T, Tanimoto M, Ito T, Murakoshi M, Ohara I, Yamazaki T, Matsumoto M, Horikoshi S, Funabiki K, Tomino Y (2009) Effects of pyridoxamine (K-163) on glucose intolerance and obesity in high-fat diet C57BL/6J mice. Metabolism 58(7):934–945

    CAS  PubMed  Article  Google Scholar 

  11. Hellwig M, Geissler S, Peto A, Knutter I, Brandsch M, Henle T (2009) Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells. J Agric Food Chem 57(14):6474–6480

    CAS  PubMed  Article  Google Scholar 

  12. Henle T (2005) Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29(4):313–322

    CAS  PubMed  Article  Google Scholar 

  13. Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H (2002) Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51(7):2082–2089

    CAS  PubMed  Article  Google Scholar 

  14. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, Taniguchi N (1996) Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J 320(Pt 3):855–863

    CAS  PubMed  Google Scholar 

  15. Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y (1997) Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 99(1):144–150

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Miyata T, Ueda Y, Horie K, Nangaku M, Tanaka S, van Ypersele de Strihou C, Kurokawa K (1998) Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int 53(2):416–422

    CAS  PubMed  Article  Google Scholar 

  17. Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving HH, Tarnow L, Rossing P, Stehouwer CD (2011) Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes Care 34(2):442–447

    CAS  PubMed  Article  Google Scholar 

  18. Penfold SA, Coughlan MT, Patel SK, Srivastava PM, Sourris KC, Steer D, Webster DE, Thomas MC, MacIsaac RJ, Jerums G, Burrell LM, Cooper ME, Forbes JM (2010) Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int 78(3):287–295

    CAS  PubMed  Article  Google Scholar 

  19. Pratley RE, Weyer C (2002) Progression from IGT to type 2 diabetes mellitus: the central role of impaired early insulin secretion. Curr Diab Rep 2(3):242–248

    PubMed  Article  Google Scholar 

  20. Puddu A, Sanguineti R, Durante A, Viviani GL (2012) Pioglitazone attenuates the detrimental effects of advanced glycation end-products in the pancreatic beta cell line HIT-T15. Regul Pept 177(1–3):79–84

    CAS  PubMed  Article  Google Scholar 

  21. Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 55(5):1289–1299

    CAS  PubMed  Article  Google Scholar 

  22. Rizkalla SW, Laromiguiere M, Champ M, Bruzzo F, Boillot J, Slama G (2007) Effect of baking process on postprandial metabolic consequences: randomized trials in normal and type 2 diabetic subjects. Eur J Clin Nutr 61(2):175–183

    CAS  PubMed  Article  Google Scholar 

  23. Sandu O, Song K, Cai W, Zheng F, Uribarri J, Vlassara H (2005) Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54(8):2314–2319

    CAS  PubMed  Article  Google Scholar 

  24. Schmidt AM, Yan SD, Wautier JL, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84(5):489–497

    CAS  PubMed  Article  Google Scholar 

  25. Sebekova K, Somoza V, Jarcuskova M, Heidland A, Podracka L (2009) Plasma advanced glycation end products are decreased in obese children compared with lean controls. Int J Pediatr Obes 4(2):112–118

    PubMed  Article  Google Scholar 

  26. Sourris KC, Lyons JG, de Courten MP, Dougherty SL, Henstridge DC, Cooper ME, Hage M, Dart A, Kingwell BA, Forbes JM, de Courten B (2009) c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals. Diabetes 58(6):1259–1265

    CAS  PubMed  Article  Google Scholar 

  27. Sourris KC, Lyons JG, Dougherty SL, Chand V, Straznicky NE, Schlaich MP, Grima MT, Cooper ME, Kingwell BA, de Courten MP, Forbes JM, de Courten B (2013) Plasma advanced glycation end products (AGEs) and NF-kappaB activity are independent determinants of diastolic and pulse pressure. Clin Chem Lab Med 1–10

  28. Stam F, Schalkwijk CG, van Guldener C, ter Wee PM, Stehouwer CD (2006) Advanced glycation end-product peptides are associated with impaired renal function, but not with biochemical markers of endothelial dysfunction and inflammation, in non-diabetic individuals. Nephrol Dial Transplant 21(3):677–682

    CAS  PubMed  Article  Google Scholar 

  29. Stirban A, Kotsi P, Franke K, Strijowski U, Cai W, Gotting C, Tschoepe D (2012) Acute macrovascular dysfunction in patients with type 2 diabetes mellitus induced by ingestion of advanced glycated betalactoglobulins. Diabetes Care

  30. Sullivan CM, Futers TS, Barrett JH, Hudson BI, Freeman MS, Grant PJ (2005) RAGE polymorphisms and the heritability of insulin resistance: the Leeds family study. Diabetes Vasc Dis Res 2(1):42–44

    Article  Google Scholar 

  31. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496

    CAS  PubMed  Article  Google Scholar 

  32. Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE, Koschinsky T, Vlassara H (2007) Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care 30(10):2579–2582

    CAS  PubMed  Article  Google Scholar 

  33. Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Chen X, Zhu L, Striker GE, Vlassara H (2011) Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care 34(7):1610–1616

    CAS  PubMed  Article  Google Scholar 

  34. Vaaler S, Hanssen KF, Aagenaes O (1984) The effect of cooking upon the blood glucose response to ingested carrots and potatoes. Diabetes Care 7(3):221–223

    CAS  PubMed  Article  Google Scholar 

  35. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M (1994) Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 91(24):11704–11708

    CAS  PubMed  Article  Google Scholar 

  36. Weyer C, Tataranni PA, Bogardus C, Pratley RE (2001) Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 24(1):89–94

    CAS  PubMed  Article  Google Scholar 

  37. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H, Yamamoto H (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108(2):261–268

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zong H, Madden A, Ward M, Mooney MH, Elliott CT, Stitt AW (2010) Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem 285(30):23137–23146

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We wish to thank all volunteers for their participation in the study. We wish to also thank the Nutrition Department at the Alfred Hospital, Melbourne Australia and Dr. Malcolm Riley, Ms. Mariee Grima, Mr Donovan Martin, at Baker IDI. This research was also in part supported by the National Health and Medical Research Council of Australia, Victorian Government’s Operational Infrastructure Support Program, Bennelong Foundation, Cardiovascular lipid grant,; Diabetes Australia Research Trust Millennium Award. BdC, JMF, BAK, MEC, MPS are all fellows of the NHMRC of Australia. MTC is a Roche/ANZSN Career Development Fellow. KCS is supported by a Viertel Diabetes Australia Research Trust Fellowship and JGL is supported by the National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand. No sponsor had any role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript.

Conflict of interest

There are no conflicts of interest, which exist for the data presented within this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karly C. Sourris.

Additional information

J. M. Forbes and K. C. Sourris contributed equally to this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forbes, J.M., Sourris, K.C., de Courten, M.P.J. et al. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids 46, 321–326 (2014). https://doi.org/10.1007/s00726-013-1542-9

Download citation

Keywords

  • Insulin secretion
  • Insulin sensitivity
  • Central obesity
  • Type 2 diabetes