Amino Acids

, Volume 45, Issue 2, pp 257–268 | Cite as

Peptides for immunological purposes: design, strategies and applications

  • Alessandro Gori
  • Renato Longhi
  • Claudio Peri
  • Giorgio Colombo
Invited Review


The development of new vaccines remains an attractive goal for disease prevention and therapy, in combination or alternative to drug-based treatment. In parallel, a growing awareness of the importance of early diagnosis in successful disease management is driving the demand for new reliable diagnostic tools. As a consequence, over the last decades an impressive amount of work has been directed toward the search for new solutions to address vaccine design and biomarker discovery. In this context, peptides have generated considerable interest thanks to their general accessibility and ease of manipulation. The aim of this review is to provide the reader a general picture of the traditional peptide-based strategies adopted in immunology and to report on recent advances made in this field, highlighting advantages and limitations of classic versus innovative approaches. Case studies are described to provide illustrative examples, and cross references to more topic-focused and exhaustive reviews are proposed throughout the text.


Antigenic peptides In silico epitope predictions Vaccine development Biomarker discovery Structural vaccinology Molecular design 


  1. Akagi T, Baba M, Akashi M (2012) Biodegradable nanoparticles as vaccine adjuvants and delivery systems : regulation of immune responses by nanoparticle-based vaccine. Adv Polym Sci 247:31–64CrossRefGoogle Scholar
  2. Alcaro MC, Lolli F, Migliorini P et al (2007) Peptides as autoimmune diseases antigenic probes––a peptide-based reverse approach to detect biomarkers of autoimmune diseases. Chem Today 25:14–16Google Scholar
  3. Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4:1123–1133. doi:10.1021/pr0500814 PubMedCrossRefGoogle Scholar
  4. Anderton SM (2004) Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 16:753–758PubMedCrossRefGoogle Scholar
  5. Azoitei ML, Correia BE, Ban Y-EA et al (2011) Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334:373–376. doi:10.1126/science.1209368 PubMedCrossRefGoogle Scholar
  6. Baker M (2005) In biomarkers we trust? Nat Biotech 23:297–304. doi:10.1038/nbt0305-297 CrossRefGoogle Scholar
  7. Bay S, Lo-Man R, Osinaga E et al (1997) Preparation of a multiple antigen glycopeptide (MAG) carrying the Tn antigen. A possible approach to a synthetic carbohydrate vaccine. J Pept Res 49:620–625PubMedCrossRefGoogle Scholar
  8. Biomarkers definition working group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacol Therap 69:89–95. doi:10.1067/mcp.2001.113989 CrossRefGoogle Scholar
  9. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144PubMedCrossRefGoogle Scholar
  10. Bock JE, Gavenonis J, Kritzer Ja (2013) Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 8:488–499. doi:10.1021/cb300515u PubMedCrossRefGoogle Scholar
  11. Briand JP, Muller S, Van Regenmortel MH (1985) Synthetic peptides as antigens: pitfalls of conjugation methods. J Immunol Meth 78:59–69CrossRefGoogle Scholar
  12. Brien-simpson NMO, Ede NJ, Brown LE et al (1997) Polymerization of unprotected synthetic peptides: a view toward synthetic peptide vaccines. J Am Chem Soc 7863:1183–1188CrossRefGoogle Scholar
  13. Burton DR (2010) Scaffolding to build a rational vaccine design strategy. Proc Natl Acad Sci USA 107:17859–17860. doi:10.1073/pnas.1012923107 PubMedCrossRefGoogle Scholar
  14. Ca Smith, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402:460–474. doi:10.1016/j.jmb.2010.07.032 CrossRefGoogle Scholar
  15. Carotenuto A, D’Ursi AM, Nardi E et al (2001) Conformational analysis of a glycosylated human myelin oligodendrocyte glycoprotein peptide epitope able to detect antibody response in multiple sclerosis. J Med Chem 44:2378–2381PubMedCrossRefGoogle Scholar
  16. Carotenuto A, Alcaro MC, Saviello MR et al (2008) Designed glycopeptides with different beta-turn types as synthetic probes for the detection of autoantibodies as biomarkers of multiple sclerosis. J Med Chem 51:5304–5309. doi:10.1021/jm800391y PubMedCrossRefGoogle Scholar
  17. Chatterjee J, Gilon C, Hoffman A, Kessler H (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342. doi:10.1021/ar8000603 PubMedCrossRefGoogle Scholar
  18. Chiarella P, Edelmann B, Fazio VM et al (2010) Antigenic features of protein carriers commonly used in immunisation trials. Biotech Lett 32:1215–1221. doi:10.1007/s10529-010-0283-z CrossRefGoogle Scholar
  19. Correia BE, Ban Y-EA, Holmes Ma et al (2010) Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18:1116–1126. doi:10.1016/j.str.2010.06.010 PubMedCrossRefGoogle Scholar
  20. Der BS, Edwards DR, Kuhlman B (2012) Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51:3933–3940. doi:10.1021/bi201881p PubMedCrossRefGoogle Scholar
  21. Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotech 26:659–667. doi:10.1016/j.tibtech.2008.08.002 CrossRefGoogle Scholar
  22. Fiorucci S, Zacharias M (2010) Prediction of protein–protein interaction sites using covering algorithms. Biophys J 98:1921–1930PubMedCrossRefGoogle Scholar
  23. Fitzmaurice CJ, Brown LE, Kronin V, Jackson DC (2000) The geometry of synthetic peptide-based immunogens affects the efficiency of T cell stimulation by professional antigen-presenting cells. Internat Immunol 12:527–535CrossRefGoogle Scholar
  24. Fleishman SJ, Ta Whitehead, Ekiert DC et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821. doi:10.1126/science.1202617 PubMedCrossRefGoogle Scholar
  25. Floris M, Moro S (2012) Mimicking peptides… in silico. Mol Inform 31:12–20. doi:10.1002/minf.201100093 CrossRefGoogle Scholar
  26. Foster S, Duvall CL, Crownover EF et al (2010) Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconj Chem 21:2205–2212. doi:10.1021/bc100204m CrossRefGoogle Scholar
  27. Francis MJ, Hastings GZ, Brown F et al (1991) Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot–mouth disease virus. Immunology 73:249–254PubMedGoogle Scholar
  28. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580. doi:10.1038/nrd1130 PubMedCrossRefGoogle Scholar
  29. Fujita Y, Taguchi H (2011) Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J 5:48. doi:10.1186/1752-153X-5-48 PubMedCrossRefGoogle Scholar
  30. Fujita Y, Abdel-Aal A-BM, Wimmer N et al (2008) Synthesis and immunological evaluation of self-adjuvanting glycolipopeptide vaccine candidates. Bioorg Med Chem 16:8907–8913. doi:10.1016/j.bmc.2008.08.064 PubMedCrossRefGoogle Scholar
  31. Fung HK, Welsh WJ, Floudas CA, Wood R (2008) Computational de novo peptide and protein design: rigid templates versus flexible templates. Ind Eng Chem Res 47:993–1001CrossRefGoogle Scholar
  32. Galdiero S, Vitiello M, Finamore E et al (2012) Activation of monocytic cells by immunostimulatory lipids conjugated to peptide antigens. Mol BioSyst 8:3166–3177. doi:10.1039/c2mb25064k PubMedCrossRefGoogle Scholar
  33. Genoni A, Morra G, Colombo G (2012) Identification of domains in protein structures from the analysis of intramolecular interactions. J Phys Chem B 116:3331–3343. doi:10.1021/jp210568a PubMedCrossRefGoogle Scholar
  34. Girbal-Neuhauser E, Durieux JJ, Arnaud M et al (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro) filaggrin by deimination of arginine residues. J Immunol 162:585–594PubMedGoogle Scholar
  35. Gonzalez S, González-Rodríguez AP, Suárez-Álvarez B et al (2011) Conceptual aspects of self and nonself discrimination. Selfnonself 2:19–25CrossRefGoogle Scholar
  36. Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3:252–262. doi:10.1038/nchembio876 PubMedCrossRefGoogle Scholar
  37. Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit JMR 20:75–82CrossRefGoogle Scholar
  38. Ha Doyle, Mamula MJ (2001) Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 22:443–449CrossRefGoogle Scholar
  39. Haridas V (2009) From peptides to non-peptide alpha-helix inducers and mimetics. Eur J Org Chem 2009:5112–5128. doi:10.1002/ejoc.200900280 CrossRefGoogle Scholar
  40. Hervé M, Maillere B, Mourier G et al (1997) On the immunogenic properties of retro-inverso peptides. Total retro-inversion of T-cell epitopes causes a loss of binding to MHC II molecules. Mol Immunol 34:157–163PubMedCrossRefGoogle Scholar
  41. Herzenberg LA, Tokuhisa T, Herzenberg LA (1980) Carrier-priming leads to hapten-specific suppression. Nature 285:664–667. doi:10.1038/285664a0 PubMedCrossRefGoogle Scholar
  42. Hijnen M, Van Zoelen DJ, Chamorro C et al (2007) A novel strategy to mimic discontinuous protective epitopes using a synthetic scaffold. Vaccine 25:6807–6817. doi:10.1016/j.vaccine.2007.06.027 PubMedCrossRefGoogle Scholar
  43. Hoffman BM, Celis LM, Da Cull et al (2005) Differential influence of dynamic processes on forward and reverse electron transfer across a protein–protein interface. Proc Natl Acad Sci USA 102:3564–3569. doi:10.1073/pnas.0408767102 PubMedCrossRefGoogle Scholar
  44. How SH, Liam CK (2006) Melioidosis: a potentially life threatening infection. Med J Malaysia 61:386–394 quiz 395PubMedGoogle Scholar
  45. Huang W, Nardelli B, Tam JP (1994) Lipophilic multiple antigen peptide system for peptide immunogen and synthetic vaccine. Mol Immunol 31:1191–1199PubMedCrossRefGoogle Scholar
  46. Jackson DC, Brien-simpson NO, Brown LE, Ede NJ (1997) Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine 15:1697–1705PubMedCrossRefGoogle Scholar
  47. Jackson DC, Lau YF, Le T et al (2004) A totally synthetic vaccine of generic structure that targets toll-like receptor two on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci USA 101:15440–15445PubMedCrossRefGoogle Scholar
  48. Katsikis PD, Schoenberger SP, Pulendran B (2007) Probing the “labyrinth” linking the innate and adaptive immune systems. Nat Immunol 8:899–901PubMedCrossRefGoogle Scholar
  49. Keskin O (2007) Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 7:31PubMedCrossRefGoogle Scholar
  50. Koga N, Tatsumi-Koga R, Liu G et al (2012) Principles for designing ideal protein structures. Nature 491:222–227. doi:10.1038/nature11600 PubMedCrossRefGoogle Scholar
  51. Kowalczyk W, De la Torre BG, Andreu D (2010) Strategies and limitations in dendrimeric immunogen synthesis. The influenza virus M2e epitope as a case study. Bioconj Chem 21:102–110. doi:10.1021/bc9003316 CrossRefGoogle Scholar
  52. Kowalczyk W, Mascaraque A, Sánchez-Navarro M et al (2012) Convergent synthesis of glycodendropeptides by click chemistry approaches. Eur J Org Chem 2012:4565–4573. doi:10.1002/ejoc.201200428 CrossRefGoogle Scholar
  53. Lassaux P, Peri C, Ferrer-Navarro M et al (2013) A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. Structure 21:167–175. doi:10.1016/j.str.2012.10.005 PubMedCrossRefGoogle Scholar
  54. Lewis SM, Ba Kuhlman (2011) Anchored design of protein–protein interfaces. PloS one 6:e20872. doi:10.1371/journal.pone.0020872 PubMedCrossRefGoogle Scholar
  55. Lindstrom TM, Robinson WH (2011) Fishing for biomarkers with antigen mimics. Cell 144:13–15. doi:10.1016/j.cell.2010.12.022 PubMedCrossRefGoogle Scholar
  56. Loddenkemper R, Hauer B (2010) Drug-resistant tuberculosis: a worldwide epidemic poses a new challenge. Deutsches Ärzteblatt international 107:10–19. doi:10.3238/arztebl.2010.0010 PubMedGoogle Scholar
  57. Lolli F, Mazzanti B, Pazzagli M et al (2005a) The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis. J Neuroimmunol 167:131–137. doi:10.1016/j.jneuroim.2005.05.016 PubMedCrossRefGoogle Scholar
  58. Lolli F, Mulinacci B, Carotenuto A et al (2005b) An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc Natl Acad Sci USA 102:10273–10278. doi:10.1073/pnas.0503178102 PubMedCrossRefGoogle Scholar
  59. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nature Rev Canc 5:845–856. doi:10.1038/nrc1739 CrossRefGoogle Scholar
  60. Mahler M, Fritzler MJ, Blüthner M (2005) Identification of a SmD3 epitope with a single symmetrical dimethylation of an arginine residue as a specific target of a subpopulation of anti-Sm antibodies. Arthritis Res Ther 7:R19–R29. doi:10.1186/ar1455 PubMedCrossRefGoogle Scholar
  61. Mandell DJ, Kortemme T (2009) Computer-aided design of functional protein interactions. Nat Chem Biol 5:797–807. doi:10.1038/nchembio.251 PubMedCrossRefGoogle Scholar
  62. Masignani V, Rappuoli R, Pizza M (2002) Reverse vaccinology: a genome-based approach for vaccine development. Exp Opin Biol Ther 2:895–905. doi:10.1517/14712598.2.8.895 CrossRefGoogle Scholar
  63. Mazzucco S, Matà S, Vergelli M et al (1999) A synthetic glycopeptide of human myelin oligodendrocyte glycoprotein to detect antibody responses in multiple sclerosis and other neurological diseases. Bioorg Med Chem Lett 9:167–172PubMedCrossRefGoogle Scholar
  64. Moreau V, Granier C, Villard S et al (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095. doi:10.1093/bioinformatics/btl012 PubMedCrossRefGoogle Scholar
  65. Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15:506–516PubMedCrossRefGoogle Scholar
  66. Mulder GE, JaW Kruijtzer, Liskamp RMJ (2012) A combinatorial approach toward smart libraries of discontinuous epitopes of HIV gp120 on a TAC synthetic scaffold. Chem Comm 48:10007–10009. doi:10.1039/c2cc35310e PubMedCrossRefGoogle Scholar
  67. Nikaido H (2009) Multidrug resistance in bacteria. Annual Rev Biochem 78:119–146. doi:10.1146/annurev.biochem.78.082907.145923 CrossRefGoogle Scholar
  68. Nikiforovich GV (2009) Computational molecular modeling in peptide drug design. Int J Pept Prot Res 44:513–531. doi:10.1111/j.1399-3011.1994.tb01140.x CrossRefGoogle Scholar
  69. Novotný J, Handschumacher M, Haber E et al (1986) Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 83:226–230PubMedCrossRefGoogle Scholar
  70. Ofek G, Guenaga FJ, Schief WR et al (2010) Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci USA 107:17880–17887. doi:10.1073/pnas.1004728107 PubMedCrossRefGoogle Scholar
  71. Papini AM (2005) Simple test for multiple sclerosis. Nat Med 11:13. doi:10.1038/nm0105-13 PubMedCrossRefGoogle Scholar
  72. Papini AM (2009) The use of post-translationally modified peptides for detection of biomarkers of immune-mediated diseases. J Pept Sci 15:621–628. doi:10.1002/psc.1166 PubMedCrossRefGoogle Scholar
  73. Pedersen DS, Abell A (2011) 1,2,3-triazoles in peptidomimetic chemistry. Eur J Org Chem 2011:2399–2411. doi:10.1002/ejoc.201100157 CrossRefGoogle Scholar
  74. Peri C, Gagni P, Combi F et al (2013) Rational epitope design for protein targeting. ACS Chem Biol 8:397–404. doi:10.1021/cb300487u PubMedCrossRefGoogle Scholar
  75. Peters AM (2000) Antibodies in nuclear medicine. Meth Mol Med 40:179–192Google Scholar
  76. Ponomarenko J, Bui H–H, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514. doi:10.1186/1471-2105-9-514 CrossRefGoogle Scholar
  77. Purcell AW, Zeng W, Na Mifsud et al (2003) Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 9:255–281. doi:10.1002/psc.456 PubMedCrossRefGoogle Scholar
  78. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414. doi:10.1038/nrd2224 PubMedCrossRefGoogle Scholar
  79. Reddy MM, Wilson R, Wilson J et al (2011) Identification of candidate IgG biomarkers for Alzheimer’s disease via combinatorial library screening. Cell 144:132–142. doi:10.1016/j.cell.2010.11.054 PubMedCrossRefGoogle Scholar
  80. Renfrew PD, Choi EJ, Bonneau R, Kuhlman B (2012) Incorporation of noncanonical amino acids into rosetta and use in computational protein–peptide interface design. PLoS ONE 7:e32637. doi:10.1371/journal.pone.0032637 PubMedCrossRefGoogle Scholar
  81. Richter F, Blomberg R, Khare SD et al (2012) Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J Am Chem Soc 134:16197–16206. doi:10.1021/ja3037367 PubMedCrossRefGoogle Scholar
  82. Robinson WH, Steinman L, Utz PJ (2002) Protein and peptide array analysis of autoimmune disease. Biotechniques 28:66–69Google Scholar
  83. Rosenthal KS (2005) Immune peptide enhancement of peptide-based vaccines. Frontiers Biosci 10:478–482CrossRefGoogle Scholar
  84. Rudd PM (2001) Glycosylation and the immune system. Science 291:2370–2376. doi:10.1126/science.291.5512.2370 PubMedCrossRefGoogle Scholar
  85. Rudd PM, Wormald MR, Stanfield RL et al (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293:351–366. doi:10.1006/jmbi.1999.3104 PubMedCrossRefGoogle Scholar
  86. Rudd PM, Wormald MR, Ra Dwek (2004) Sugar-mediated ligand-receptor interactions in the immune system. Trends Biotech 22:524–530. doi:10.1016/j.tibtech.2004.07.012 CrossRefGoogle Scholar
  87. Sadler K, Zeng W, Jackson DC (2002) Synthetic peptide epitope-based polymers: controlling size and determining the efficiency of epitope incorporation. J Pept Res 60:150–158PubMedCrossRefGoogle Scholar
  88. Sammond DW, Bosch DE, Butterfoss GL et al (2011) Computational design of the sequence and structure of a protein-binding peptide. J Am Chem Soc 133:4190–4192PubMedCrossRefGoogle Scholar
  89. Scarabelli G, Morra G, Colombo G (2010) Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping. Biophys J 98:1966–1975. doi:10.1016/j.bpj.2010.01.014 PubMedCrossRefGoogle Scholar
  90. Schott ME, Wells DT, Schlom J, Abrams SI (1996) Comparison of linear and branched peptide forms (MAPs) in the induction of T helper responses to point-mutated ras immunogens. Cell Immun 174:199–209. doi:10.1006/cimm.1996.0310 CrossRefGoogle Scholar
  91. Schutze MP, Leclerc C, Jolivet M et al (1985) Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immun 135:2319–2322PubMedGoogle Scholar
  92. Sharav T, Wiesmüller K-H, Walden P (2007) Mimotope vaccines for cancer immunotherapy. Vaccine 25:3032–3037PubMedCrossRefGoogle Scholar
  93. Sheinerman FB, Norel R, Honig B (2000) Electrostatic aspects of protein–protein interactions. Curr Opin Struct Biol 10:153–159PubMedCrossRefGoogle Scholar
  94. Skwarczynski M, Zaman M, Urbani CN et al (2010) Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Ed 49:5742–5745. doi:10.1002/anie.201002221 CrossRefGoogle Scholar
  95. Souroujon MC, Mochly-Rosen D (1998) Peptide modulators of protein–protein interactions in intracellular signaling. Nat Biotech 16:919–924. doi:10.1038/nbt1098-919 CrossRefGoogle Scholar
  96. Thornton JM, Edwards MS, Taylor WR, Barlow DJ (1986) Location of “continuous” antigenic determinants in the protruding regions of proteins. Eur Mol Biol Organiz J 5:409–413Google Scholar
  97. Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recog 20:283–299. doi:10.1002/jmr CrossRefGoogle Scholar
  98. Timmerman P, Puijk WC, Boshuizen RS et al (2009) Functional reconstruction of structurally complex epitopes using CLIPS TM technology. Open Vaccine J 2:56–67CrossRefGoogle Scholar
  99. Tsunoda T (2004) Development for a novel cancer vaccine. Gan to kagaku ryoho Cancer chemotherapy 31:2095–2099PubMedGoogle Scholar
  100. Ulucan O, Eyrisch S, Helms V (2012) Druggability of dynamic protein–protein interfaces. Curr Pharmac Des 18:4599–4606CrossRefGoogle Scholar
  101. Uto T, Wang X, Akagi T et al (2009) Improvement of adaptive immunity by antigen-carrying biodegradable nanoparticles. Biochem Biophys Res Comm 379:600–604. doi:10.1016/j.bbrc.2008.12.122 PubMedCrossRefGoogle Scholar
  102. Van Regenmortel MH (2001) Antigenicity and immunogenicity of synthetic peptides. Biol J Intern Association Biol Standardization 29:209–213Google Scholar
  103. Van Regenmortel MHV (2009a) What is a B-cell epitope? Meth Mol Biol 524:3–20CrossRefGoogle Scholar
  104. Van Regenmortel MHV (2009b) Synthetic peptide vaccines and the search for neutralization B-cell. Open Vaccine J 2:33–44Google Scholar
  105. Vossenaar ER, Van Venrooij WJ (2004) Anti-CCP antibodies, a highly specific marker for (early) rheumatoid arthritis. Clin Appl Immunol Rev 4:239–262. doi:10.1016/j.cair.2003.11.001 CrossRefGoogle Scholar
  106. Waldmann TA (1991) Monoclonal antibodies in diagnosis and therapy. Science 252:1657–1662PubMedCrossRefGoogle Scholar
  107. Wang W (2011) Selection of adjuvants for enhanced vaccine potency. World J Vacc 01:33–78. doi:10.4236/wjv.2011.12007 CrossRefGoogle Scholar
  108. Westhof E, Altschuh D, Moras D et al (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311:123–126PubMedCrossRefGoogle Scholar
  109. Wiersinga WJ, Van Der Poll T, White NJ et al (2006) Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4:272–282PubMedCrossRefGoogle Scholar
  110. Wilkinson BL, Day S, Chapman R et al (2012) Synthesis and immunological evaluation of self-assembling and self-adjuvanting tricomponent glycopeptide cancer-vaccine candidates. Chem Eur J 18:16540–16548. doi:10.1002/chem.201202629 PubMedCrossRefGoogle Scholar
  111. Yin H, Slusky JS, Berger BW et al (2007) Computational design of peptides that target transmembrane helices. Science 315:1817–1822. doi:10.1126/science.1136782 PubMedCrossRefGoogle Scholar
  112. Yoshikawa T, Okada N, Oda A et al (2008) Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Comm 366:408–413. doi:10.1016/j.bbrc.2007.11.153 PubMedCrossRefGoogle Scholar
  113. Zen A, Micheletti C, Keskin O, Nussinov R (2010) Comparing interfacial dynamics in protein–protein complexes: an elastic network approach. BMC Struct Biol 10:26. doi:10.1186/1472-6807-10-26 PubMedCrossRefGoogle Scholar
  114. Zeng W, Ghosh S, Lau YF et al (2002) Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immun 169:4905–4912PubMedGoogle Scholar
  115. Zhu X, Ramos TV, Gras-Masse H et al (2004) Lipopeptide epitopes extended by an Nepsilon-palmitoyl-lysine moiety increase uptake and maturation of dendritic cells through a toll-like receptor-2 pathway and trigger a Th1-dependent protective immunity. Eur J Immun 34:3102–3114CrossRefGoogle Scholar
  116. Zolnik BS, González-Fernández A, Sadrieh N, Ma Dobrovolskaia (2010) Nanoparticles and the immune system. Endocrinology 151:458–465. doi:10.1210/en.2009-1082 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Alessandro Gori
    • 1
  • Renato Longhi
    • 1
  • Claudio Peri
    • 1
  • Giorgio Colombo
    • 1
  1. 1.Istituto di Chimica del Riconoscimento MolecolareConsiglio Nazionale delle RicercheMilanItaly

Personalised recommendations