Amino Acids

, Volume 46, Issue 1, pp 111–119 | Cite as

The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II

  • Takashi Ito
  • Stephen Schaffer
  • Junichi AzumaEmail author
Invited Review


Taurine, a ubiquitous endogenous sulfur-containing amino acid, possesses numerous pharmacological and physiological actions, including antioxidant activity, modulation of calcium homeostasis and antiapoptotic effects. There is mounting evidence supporting the utility of taurine as a pharmacological agent against heart disease, including chronic heart failure (CHF). In the past decade, angiotensin II blockade and β-adrenergic inhibition have served as the mainstay in the treatment of CHF. Both groups of pharmaceutical agents decrease mortality and improve the quality of life, a testament to the critical role of the sympathetic nervous system and the renin--angiotensin system in the development of CHF. Taurine has also attracted attention because it has beneficial actions in CHF, in part by its demonstrated inhibition of the harmful actions of the neurohumoral factors. In this review, we summarize the beneficial actions of taurine in CHF, focusing on its antagonism of the catecholamines and angiotensin II.


Chronic heart failure Angiotensin II Catecholamine Taurine 



This review work is supported from Grants-in-Aid from the Ministry of Health, Labor and Welfare and from the Ministry of Education, Science, Sports and Culture of Japan. This work is also supported by a research grant from Taisho Pharmaceutical Co. Ltd. (Japan).


  1. Abe M, Shibata K, Matsuda T, Furukawa T (1987) Inhibition of hypertension and salt intake by oral taurine treatment in hypertensive rats. Hypertension 10:383–389PubMedCrossRefGoogle Scholar
  2. Abe M, Tokunaga T, Yamada K, Furukawa T (1988) Gamma-aminobutyric acid and taurine antagonize the central effects of angiotensin II and renin on the intake of water and salt, and on blood pressure in rats. Neuropharmacology 27:309–318PubMedCrossRefGoogle Scholar
  3. Abebe W, Mozaffari MS (2011) Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 1:293–311PubMedCentralPubMedGoogle Scholar
  4. Azuma J, Hasegawa H, Sawamura A, Awata N, Harada H, Ogura K, Kishimoto S (1982) Taurine for treatment of congestive heart failure. Int J Cardiol 2:303–304PubMedCrossRefGoogle Scholar
  5. Azuma J, Hasegawa H, Sawamura A, Awata N, Ogura K, Harada H, Yamamura Y, Kishimoto S (1983) Therapy of congestive heart failure with orally administered taurine. Clin Ther 5:398–408PubMedGoogle Scholar
  6. Azuma J, Sawamura A, Awata N, Ohta H, Hamaguchi T, Harada H, Takihara K, Hasegawa H, Yamagami T, Ishiyama T et al (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8:276–282PubMedCrossRefGoogle Scholar
  7. Azuma J, Hamaguchi T, Ohta H, Takihara K, Awata N, Sawamura A, Harada H, Tanaka Y, Kishimoto S (1987) Calcium overload-induced myocardial damage caused by isoproterenol and by adriamycin: possible role of taurine in its prevention. Adv Exp Med Biol 217:167–179PubMedCrossRefGoogle Scholar
  8. Azuma J, Katsume H, Kagisgima T, Furukawa K, Awata N, Ishiyama T, Yamagami T, Ishikawa H, Iwata H, Kishimoto S et al (1989) Clinical evaluation of taurine in congestive heart failure—a double-blind comparative study using CoQ10 as a control drug. In: Iwata H, Lombardini JB, Segawa T (eds) Taurine and the heart. Kluwer Academic Publishers, Boston, pp 75–97CrossRefGoogle Scholar
  9. Azuma J, Sawamura A, Awata N (1992) Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 56:95–99PubMedCrossRefGoogle Scholar
  10. Azuma M, Takahashi K, Fukuda T, Ohyabu Y, Yamamoto I, Kim S, Iwao H, Schaffer SW, Azuma J (2000) Taurine attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac myocytes. Eur J Pharmacol 403:181–188PubMedCrossRefGoogle Scholar
  11. Ballard-Croft C, Mozaffari MS, Azuma J, Schaffer S (1997) Interaction between taurine and angiotensin II: modulation of calcium transport and myocardial contractile function. Amino Acids 13:105–114CrossRefGoogle Scholar
  12. Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA (2011) Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 57:333–337PubMedCrossRefGoogle Scholar
  13. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159PubMedCrossRefGoogle Scholar
  14. Braunwald E, Bristow MR (2000) Congestive heart failure: fifty years of progress. Circulation 102:IV14–IV23PubMedGoogle Scholar
  15. Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20:1716–1723PubMedCrossRefGoogle Scholar
  16. Chovan JP, Kulakowski EC, Sheakowski S, Schaffer SW (1980) Calcium regulation of low-affinity taurine binding sites of cardiac sarcolemma. Mol Pharmacol 17:295–300PubMedGoogle Scholar
  17. Colucci WS (1998) The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol 21:I20–I24PubMedCrossRefGoogle Scholar
  18. Crass MF III, Lombardini JB (1977) Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sci 21:951–958PubMedCrossRefGoogle Scholar
  19. Cruz CI, Ruiz-Torres P, del Moral RG, Rodriguez-Puyol M, Rodriguez-Puyol D (2000) Age-related progressive renal fibrosis in rats and its prevention with ACE inhibitors and taurine. Am J Physiol Renal Physiol 278:F122–F129PubMedGoogle Scholar
  20. Denipote F, Ardisson LP, Azevedo PS, Minicucci MF, Lima-Leopoldo AP, Chiuso-Minicucci F, Polegato BF, Matsubara BB, Matsubara LS, Novelli E et al (2011) Influence of taurine on cardiac remodeling induced by tobacco smoke exposure. Cell Physiol Biochem 27:291–298PubMedCrossRefGoogle Scholar
  21. Dhalla NS, Adameova A, Kaur M (2010) Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol 24:539–546PubMedCrossRefGoogle Scholar
  22. Francis GS, Goldsmith SR, Levine TB, Olivari MT, Cohn JN (1984) The neurohumoral axis in congestive heart failure. Ann Intern Med 101:370–377PubMedCrossRefGoogle Scholar
  23. Franconi F, Giotti A, Manzini S, Martini F, Stendardi I, Zilletti L (1982) The effect of taurine on high potassium- and noradrenaline-induced contraction in rabbit ear artery. Br J Pharmacol 75:605–612PubMedCrossRefGoogle Scholar
  24. Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532PubMedCrossRefGoogle Scholar
  25. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508PubMedCentralPubMedGoogle Scholar
  26. Gomes da Silva AQ, Xavier CH, Campagnole-Santos MJ, Caligiorne SM, Baltatu OC, Bader M, Santos RA, Fontes MA (2012) Cardiovascular responses evoked by activation or blockade of GABA(A) receptors in the hypothalamic PVN are attenuated in transgenic rats with low brain angiotensinogen. Brain Res 1448:101–110PubMedCrossRefGoogle Scholar
  27. Hamaguchi T, Azuma J, Awata N, Ohta H, Takihara K, Harada H, Kishimoto S, Sperelakis N (1988) Reduction of doxorubicin-induced cardiotoxicity in mice by taurine. Res Commun Chem Pathol Pharmacol 59:21–30PubMedGoogle Scholar
  28. Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, Chamat S (2004) Protective effect of taurine against free radicals damage in the rat myocardium. Exp Toxicol Pathol 56:189–194PubMedCrossRefGoogle Scholar
  29. Hano T, Kasano M, Tomari H, Iwane N (2009) Taurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats. Adv Exp Med Biol 643:57–63PubMedCrossRefGoogle Scholar
  30. Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N (2010) A role for taurine in mitochondrial function. J Biomed Sci 17(Suppl 1):S23PubMedCrossRefGoogle Scholar
  31. Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ (2005) Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 45:1832–1839PubMedCrossRefGoogle Scholar
  32. Huxtable R, Bressler R (1974) Taurine concentrations in congestive heart failure. Science 184:1187–1188PubMedCrossRefGoogle Scholar
  33. Ito T, Azuma J (2012) Taurine depletion-related cardiomyopathy in animals. In: Veselka J (ed) Cardiomyopathies—from basic research to clinical management. doi: 10.5772/30023. ISBN 978-953-307-834-2
  34. Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M et al (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937PubMedCrossRefGoogle Scholar
  35. Jeejeebhoy F, Keith M, Freeman M, Barr A, McCall M, Kurian R, Mazer D, Errett L (2002) Nutritional supplementation with MyoVive repletes essential cardiac myocyte nutrients and reduces left ventricular size in patients with left ventricular dysfunction. Am Heart J 143:1092–1100PubMedCrossRefGoogle Scholar
  36. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232PubMedCrossRefGoogle Scholar
  37. Kramer JH, Chovan JP, Schaffer SW (1981) Effect of taurine on calcium paradox and ischemic heart failure. Am J Physiol 240:H238–H246PubMedGoogle Scholar
  38. Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81:519–527PubMedCrossRefGoogle Scholar
  39. Li N, Sawamura M, Nara Y, Ikeda K, Yamori Y (1996) Direct inhibitory effects of taurine on norepinephrine-induced contraction in mesenteric artery of stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 403:257–262PubMedCrossRefGoogle Scholar
  40. Li C, Cao L, Zeng Q, Liu X, Zhang Y, Dai T, Hu D, Huang K, Wang Y, Wang X et al (2005) Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther 19:105–112PubMedCrossRefGoogle Scholar
  41. Li Y, Arnold JM, Pampillo M, Babwah AV, Peng T (2009) Taurine prevents cardiomyocyte death by inhibiting NADPH oxidase-mediated calpain activation. Free Radical Biol Med 46:51–61CrossRefGoogle Scholar
  42. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D et al (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240PubMedCentralPubMedCrossRefGoogle Scholar
  43. Liu Y, Niu L, Zhang W, Cui L, Zhang X, Liang Y, Zhang M (2009) Effects of taurine on contractions of the porcine coronary artery. Pharmacol Rep 61:681–689PubMedGoogle Scholar
  44. Marcinkiewicz J, Kontny E (2012) Taurine and inflammatory diseases. Amino acids [Epub ahead of print]Google Scholar
  45. Marcinkiewicz J, Chain B, Nowak B, Grabowska A, Bryniarski K, Baran J (2000) Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res 49:280–289PubMedCrossRefGoogle Scholar
  46. McBroom MJ, Welty JD (1977) Effects of taurine on heart calcium in the cardiomyopathic hamster. J Mol Cell Cardiol 9:853–858PubMedCrossRefGoogle Scholar
  47. Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23:381–393PubMedCrossRefGoogle Scholar
  48. Mizushima S, Nara Y, Sawamura M, Yamori Y (1996) Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol 403:615–622PubMedCrossRefGoogle Scholar
  49. Moise NS, Pacioretty LM, Kallfelz FA, Stipanuk MH, King JM, Gilmour RF (1991) Dietary taurine deficiency and dilated cardiomyopathy in the fox. Am Heart J 121:541–547PubMedCrossRefGoogle Scholar
  50. Mozaffari MS, Miyata N, Schaffer SW (2003) Effects of taurine and enalapril on kidney function of the hypertensive glucose-intolerant rat. Am J Hypertens 16:673–680PubMedCrossRefGoogle Scholar
  51. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799PubMedCrossRefGoogle Scholar
  52. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, Yamamoto M, Miyaji K, Saito H, Morita H et al (2002) Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 105:2867–2871PubMedCrossRefGoogle Scholar
  53. Nishida S, Satoh H (2009) Vascular modulation of rat aorta by taurine. Adv Exp Med Biol 643:37–46PubMedCrossRefGoogle Scholar
  54. Niu LG, Zhang MS, Liu Y, Xue WX, Liu DB, Zhang J, Liang YQ (2008) Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol 580:169–174PubMedCrossRefGoogle Scholar
  55. Novotny MJ, Hogan PM, Flannigan G (1994) Echocardiographic evidence for myocardial failure induced by taurine deficiency in domestic cats. Can J Vet Res-Revue Canadienne De Recherche Veterinaire 58:6–12Google Scholar
  56. Ohta H, Azuma J, Onishi S, Awata N, Takihara K, Kishimoto S (1986) Protective effect of taurine against isoprenaline-induced myocardial damage. Basic Res Cardiol 81:473–481PubMedCrossRefGoogle Scholar
  57. Ohta H, Azuma J, Awata N, Hamaguchi T, Tanaka Y, Sawamura A, Kishimoto S, Sperelakis N (1988) Mechanism of the protective action of taurine against isoprenaline induced myocardial damage. Cardiovasc Res 22:407–413PubMedCrossRefGoogle Scholar
  58. Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F (2010) Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62:185–193PubMedGoogle Scholar
  59. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885PubMedCrossRefGoogle Scholar
  60. Pansani MC, Azevedo PS, Rafacho BP, Minicucci MF, Chiuso-Minicucci F, Zorzella-Pezavento SG, Marchini JS, Padovan GJ, Fernandes AA, Matsubara BB et al (2012) Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats. PLoS ONE 7:e41439PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pasantes-Morales H, Chatagner F, Mandel P (1980) Synthesis of taurine in rat liver and brain in vivo. Neurochem Res 5:441–451PubMedCrossRefGoogle Scholar
  62. Patel KP, Zheng H (2012) Central neural control of sympathetic nerve activity in heart failure following exercise training. Am J Physiol Heart Circ Physiol 302:H527–H537PubMedCrossRefGoogle Scholar
  63. Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine—a reversible cardiomyopathy. Science 237:764–768PubMedCrossRefGoogle Scholar
  64. Rana SK, Sanders TA (1986) Taurine concentrations in the diet, plasma, urine and breast milk of vegans compared with omnivores. Br J Nutr 56:17–27PubMedCrossRefGoogle Scholar
  65. Raschke P, Massoudy P, Becker BF (1995) Taurine protects the heart from neutrophil-induced reperfusion injury. Free Radic Biol Med 19:461–471PubMedCrossRefGoogle Scholar
  66. Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262:E763–E778PubMedGoogle Scholar
  67. Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW (2008) Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am J Physiol 294:C413–C422CrossRefGoogle Scholar
  68. Ristori MT, Verdetti J (1991) Effects of taurine on rat aorta in vitro. Fundam Clin Pharmacol 5:245–258PubMedCrossRefGoogle Scholar
  69. Ritter O, Neyses L (2003) The molecular basis of myocardial hypertrophy and heart failure. Trends Mol Med 9:313–321PubMedCrossRefGoogle Scholar
  70. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432PubMedCrossRefGoogle Scholar
  71. Rudolph V, Andrie RP, Rudolph TK, Friedrichs K, Klinke A, Hirsch-Hoffmann B, Schwoerer AP, Lau D, Fu X, Klingel K et al (2010) Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med 16:470–474PubMedCentralPubMedCrossRefGoogle Scholar
  72. Sato Y, Ando K, Fujita T (1987) Role of sympathetic nervous system in hypotensive action of taurine in DOCA-salt rats. Hypertension 9:81–87PubMedCrossRefGoogle Scholar
  73. Satoh H, Sperelakis N (1998) Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol 30:451–463PubMedCrossRefGoogle Scholar
  74. Sawamura A, Azuma J, Harada H, Hasegawa H, Ogura K, Sperelakis N, Kishimoto S (1983) Protection by oral pretreatment with taurine against the negative inotropic effects of low-calcium medium on isolated perfused chick heart. Cardiovasc Res 17:620–626PubMedCrossRefGoogle Scholar
  75. Sawamura A, Sada H, Azuma J, Kishimoto S, Sperelakis N (1990) Taurine modulates ion influx through cardiac Ca2+ channels. Cell Calcium 11:251–259PubMedCrossRefGoogle Scholar
  76. Schaffer SW, Ballard-Croft C, Takahashi K, Azuma J (1998) Effect of taurine depletion on angiotensin II-mediated modulation of myocardial function. Adv Exp Med Biol 442:145–152PubMedCrossRefGoogle Scholar
  77. Schaffer SW, Lombardini JB, Azuma J (2000a) Interaction between the actions of taurine and angiotensin II. Amino Acids 18:305–318PubMedCrossRefGoogle Scholar
  78. Schaffer S, Solodushko V, Azuma J (2000b) Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol 483:57–69PubMedCrossRefGoogle Scholar
  79. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99PubMedCrossRefGoogle Scholar
  80. Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2PubMedCrossRefGoogle Scholar
  81. Schaffer SW, Jong CJ, Warner D, Ito T, Azuma J (2013) Taurine deficiency and MELAS are closely related syndromes. Adv Exp Med Biol 776:153–165PubMedCrossRefGoogle Scholar
  82. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202PubMedCrossRefGoogle Scholar
  83. Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399PubMedCrossRefGoogle Scholar
  84. Sharov VS, Dremina ES, Galeva NA, Williams TD, Schöneich C (2006) Quantitative mapping of oxidation-sensitive cysteine residues of SERCA in vivo and in vitro by HPLC electrospray-tandem MS: selective protein modification during biological aging. Biochem J 394:605–615PubMedCrossRefGoogle Scholar
  85. Shi Y, Ducharme A, Li D, Gaspo R, Nattel S, Tardif JC (2001) Remodeling of atrial dimensions and emptying function in canine models of atrial fibrillation. Cardiovasc Res 52:217–225PubMedCrossRefGoogle Scholar
  86. Shi YR, Bu DF, Qi YF, Gao L, Jiang HF, Pang YZ, Tang CS, Du JB (2002) Dysfunction of myocardial taurine transport and effect of taurine supplement in rats with isoproterenol-induced myocardial injury. Acta Pharmacol Sin 23:910–918PubMedGoogle Scholar
  87. Shiny KS, Kumar SH, Farvin KH, Anandan R, Devadasan K (2005) Protective effect of taurine on myocardial antioxidant status in isoprenaline-induced myocardial infarction in rats. J Pharm Pharmacol 57:1313–1317PubMedCrossRefGoogle Scholar
  88. Sirker A, Zhang M, Murdoch C, Shah AM (2007) Involvement of NADPH oxidases in cardiac remodeling and heart failure. Am J Nephrol 27:649–660PubMedCrossRefGoogle Scholar
  89. Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63PubMedCentralPubMedCrossRefGoogle Scholar
  90. Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCrossRefGoogle Scholar
  91. Takahashi K, Azuma M, Taira K, Baba A, Yamamoto I, Schaffer SW, Azuma J (1997) Effect of taurine on angiotensin II-induced hypertrophy of neonatal rat cardiac cells. J Cardiovasc Pharmacol 30:725–730PubMedCrossRefGoogle Scholar
  92. Takihara K, Azuma J, Awata N, Ohta H, Hamaguchi T, Sawamura A, Tanaka Y, Kishimoto S, Sperelakis N (1986) Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J 112:1278–1284PubMedCrossRefGoogle Scholar
  93. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248PubMedCrossRefGoogle Scholar
  94. Tang WH, Brennan ML, Philip K, Tong W, Mann S, Van Lente F, Hazen SL (2006) Plasma myeloperoxidase levels in patients with chronic heart failure. Am J Cardiol 98:796–799PubMedCrossRefGoogle Scholar
  95. Yamamoto J, Akabane S, Yoshimi H, Nakai M, Ikeda M (1985) Effects of taurine on stress-evoked hemodynamic and plasma catecholamine changes in spontaneously hypertensive rats. Hypertension 7:913–922PubMedCrossRefGoogle Scholar
  96. Yamauchi-Takihara K, Azuma J, Kishimoto S, Onishi S, Sperelakis N (1988) Taurine prevention of calcium paradox-related damage in cardiac muscle. Its regulatory action on intracellular cation contents. Biochem Pharmacol 37:2651–2658PubMedCrossRefGoogle Scholar
  97. Zelis R, Mason DT, Braunwald E (1968) A comparison of the effects of vasodilator stimuli on peripheral resistance vessels in normal subjects and in patients with congestive heart failure. J Clin Invest 47:960–970PubMedCentralPubMedCrossRefGoogle Scholar
  98. Zucker IH (2006) Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 48:1005–1011PubMedCrossRefGoogle Scholar
  99. Zulli A (2011) Taurine in cardiovascular disease. Curr Opin Clin Nutr Metab Care 14:57–60PubMedCrossRefGoogle Scholar
  100. Zulli A, Lau E, Wijaya BP, Jin X, Sutarga K, Schwartz GD, Learmont J, Wookey PJ, Zinellu A, Carru C et al (2009) High dietary taurine reduces apoptosis and atherosclerosis in the left main coronary artery: association with reduced CCAAT/enhancer binding protein homologous protein and total plasma homocysteine but not lipidemia. Hypertension 53:1017–1022PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Clinical Pharmacogenomics, School of PharmacyHyogo University of Health SciencesKobeJapan
  2. 2.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobileUSA

Personalised recommendations