Amino Acids

, Volume 46, Issue 1, pp 81–88 | Cite as

Potential role of taurine in the prevention of diabetes and metabolic syndrome

  • Masato Imae
  • Toshiki Asano
  • Shigeru MurakamiEmail author
Review Article


Metabolic syndrome is characterized by the cluster of a number of metabolic abnormalities in the presence of underlying insulin resistance. The prevalence of metabolic syndrome has steadily increased in all populations worldwide. Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid that is involved in a variety of physiological functions. Clinical and experimental studies show that taurine intake may be beneficial in the prevention of metabolic syndrome including diabetes, obesity, dyslipidemia, and hypertension. This article reviews the effect of taurine on all of the components of metabolic syndrome. In addition, the possible mechanisms by which taurine prevents diabetes and metabolic syndrome are also discussed. Further study is needed to determine the role of taurine in the development of metabolic syndrome in humans, because there is presently limited clinical data available.


Taurine Diabetes Metabolic syndrome 


Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Abebe W, Mozaffari MS (2000) Effects of chronic taurine treatment on reactivity of the rat aorta. Amino Acids 19:615–623PubMedCrossRefGoogle Scholar
  2. Azuma M, Takahashi K, Fukuda T, Ohyabu Y, Yamamoto I, Kim S, Iwao H, Schaffer SW, Azuma J (2000) Taurine attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac myocytes. Eur J Pharmacol 403:181–188PubMedCrossRefGoogle Scholar
  3. Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-κB activation and IκB kinase activity. J Immunol 167:2275–2281PubMedGoogle Scholar
  4. Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic redisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247PubMedCrossRefGoogle Scholar
  5. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedCrossRefGoogle Scholar
  6. Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B, Martín F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511PubMedCrossRefGoogle Scholar
  7. Chang KJ, Kwon W (2000) Immunohistochemical localization of insulin in pancreatic beta-cells of taurine-supplemented or taurine-depleted diabetic rats. Adv Exp Med Biol 483:579–587PubMedCrossRefGoogle Scholar
  8. Chauncey KB, Tenner TE Jr, Lombardini JB, Jones BG, Brooks ML, Warner RD, Davis RL, Ragain RM (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–96PubMedCrossRefGoogle Scholar
  9. Chen W, Matuda K, Nishimura N, Yokogoshi H (2004) The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet. Life Sci 74:1889–1898PubMedCrossRefGoogle Scholar
  10. Chen SW, Chen YX, Shi J, Lin Y, Xie WF (2006) The restorative effect of taurine on experimental nonalcoholic steatohepatitis. Dig Dis Sci 51:2225–2234PubMedCrossRefGoogle Scholar
  11. Cherif H, Reusens B, Dahri S, Remacle C, Hoet JJ (1996) Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol 151:501–506PubMedCrossRefGoogle Scholar
  12. Choi MJ, Kim JH, Chang KJ (2006) The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol 583:235–242PubMedCrossRefGoogle Scholar
  13. Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308PubMedCrossRefGoogle Scholar
  14. De Luca G, Calpona PR, Caponetti A, Romano G, Di Benedetto A, Cucinotta D, Di Giorgio RM (2001) Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism 50:60–64PubMedCrossRefGoogle Scholar
  15. El Mesallamy HO, El-Demerdash E, Hammad LN, El Magdoub HM (2010) Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetol Metab Syndr 2:46PubMedCentralPubMedCrossRefGoogle Scholar
  16. El-Batch M, Hassan AM, Mahmoud HA (2011) Taurine is more effective than melatonin on cytochrome P450 2E1 and some oxidative stress markers in streptozotocin-induced diabetic rats. J Agric Food Chem 59:4995–5000PubMedCrossRefGoogle Scholar
  17. Elizarova EP, Nedosugova LV (1996) First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv Exp Med Biol 403:583–588PubMedCrossRefGoogle Scholar
  18. Fennessy FM, Moneley DS, Wang JH, Kelly CJ, Bouchier-Hayes DJ (2003) Taurine and vitamin C modify monocyte and endothelial dysfunction in young smokers. Circulation 107:410–415PubMedCrossRefGoogle Scholar
  19. Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119PubMedGoogle Scholar
  20. Fujihira E, Takahashi H, Nakazawa M (1970) Effect of long-term feeding of taurine in hereditary hyperglycemic obese mice. Chem Pharm Bull 18:1636–1642PubMedCrossRefGoogle Scholar
  21. Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532PubMedCrossRefGoogle Scholar
  22. Gavrovskaya LK, Ryzhova OV, Safonova AF, Matveev AK, Sapronov NS (2008) Protective effect of taurine on rats with experimental insulin-dependent diabetes mellitus. Bull Exp Biol Med 146:226–228PubMedCrossRefGoogle Scholar
  23. González-Chávez A, Elizondo-Argueta S, Gutiérrez-Reyes G, León-Pedroza JI (2011) Pathophysiological implications between chronic inflammation and the development of diabetes and obesity. Cir Cir 79:209–216PubMedGoogle Scholar
  24. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C, American Heart Association, National Heart, Lung, and Blood Institute (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109:433–438PubMedCrossRefGoogle Scholar
  25. Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753PubMedGoogle Scholar
  26. Hano T, Kasano M, Tomari H, Iwane N (2009) Taurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats. Adv Exp Med Biol 643:57–63PubMedCrossRefGoogle Scholar
  27. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346PubMedCrossRefGoogle Scholar
  28. Harada N, Ninomiya C, Osako Y, Morishima M, Mawatari K, Takahashi A, Nakaya Y (2004) Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats. Obes Res 12:1077–1084PubMedCrossRefGoogle Scholar
  29. Hsueh WA, Wyne K (2011) Renin-Angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens 13:224–237CrossRefGoogle Scholar
  30. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  31. Ideishi M, Miura S, Sakai T, Sasaguri M, Misumi Y, Arakawa K (1994) Taurine amplifies renal kallikrein and prevents salt-induced hypertension in Dahl rats. J Hypertens 12:653–661PubMedCrossRefGoogle Scholar
  32. Iimura O, Shimamoto K (1993) Salt and hypertension: water-sodium handling in essential hypertension. Ann NY Acad Sci 676:105–121PubMedCrossRefGoogle Scholar
  33. Ito T, Schaffer SW, Azuma J (2011) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539PubMedCentralPubMedCrossRefGoogle Scholar
  34. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232PubMedCrossRefGoogle Scholar
  35. Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA 101:15070–15075PubMedCrossRefGoogle Scholar
  36. Kishida T, Miyazato S, Ogawa H, Ebihara K (2003) Taurine prevents hypercholesterolemia in ovariectomized rats fed corn oil but not in those fed coconut oil. J Nutr 133:2616–2621PubMedGoogle Scholar
  37. Kondo Y, Toda Y, Kitajima H, Oda H, Nagate T, Kameo K, Murakami S (2002) Taurine inhibits development of atherosclerotic lesions in apolipoprotein E-deficient mice. Clin Exp Pharmacol Physiol 28:809–815CrossRefGoogle Scholar
  38. Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838PubMedCrossRefGoogle Scholar
  39. Lam NV, Chen W, Suruga K, Nishimura N, Goda T, Yokogoshi H (2006) Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells. Amino Acids 30:43–48PubMedCrossRefGoogle Scholar
  40. Lamb RE, Goldstein BJ (2008) Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract 62:1087–1095PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lampson WG, Kramer JH, Schaffer SW (1983) Potentiation of the actions of insulin by taurine. Can J Physiol Pharmacol 61:457–463PubMedCrossRefGoogle Scholar
  42. Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:E29–E36PubMedCrossRefGoogle Scholar
  43. Liu Y, Quinn MR (2002) Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett 80:27–32PubMedCrossRefGoogle Scholar
  44. Malpas SC, Ramchandra R, Guild SJ, McBryde F, Barrett CJ (2006) Renal sympathetic nerve activity in the development of hypertension. Curr Hypertens Rep 8:242–248PubMedCrossRefGoogle Scholar
  45. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760PubMedCrossRefGoogle Scholar
  46. Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FN, Barada K (2007) Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study. Diabetes Care 30:2652–2654PubMedCrossRefGoogle Scholar
  47. Mizushima S, Nara Y, Sawamura M, Yamori Y (1996) Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol 403:615–622PubMedCrossRefGoogle Scholar
  48. Mozaffari MS, Abdelsayed R, Patel C, Schaffer SW (2006) Effects of dietary salt and fat on taurine excretion in healthy and diseased rats. Adv Exp Med Biol 583:173–180PubMedCrossRefGoogle Scholar
  49. Murakami S, Yamagishi I, Asami Y, Ohta Y, Toda Y, Nara Y, Yamori Y (1996) Hypolipidemic effect of taurine in stroke-prone spontaneously hypertensive rats. Pharmacology 52:303–313PubMedCrossRefGoogle Scholar
  50. Murakami S, Kondo Y, Sakurai T, Kitajima H, Nagate T (2002a) Taurine suppresses development of atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. Atherosclerosis 163:79–87PubMedCrossRefGoogle Scholar
  51. Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, Fukuda N (2002b) Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci 70:2355–2366PubMedCrossRefGoogle Scholar
  52. Nandhini AT, Thirunavukkarasu V, Anuradha CV (2004) Potential role of kinins in the effects of taurine in high-fructose-fed rats. Can J Physiol Pharmacol 82:1–8PubMedCrossRefGoogle Scholar
  53. Nandhini AT, Thirunavukkarasu V, Anuradha CV (2005) Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant rats. Diabetes Metab 31:337–344PubMedCrossRefGoogle Scholar
  54. Nara Y, Yamori Y, Lovenberg W (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27:2689–2692PubMedCrossRefGoogle Scholar
  55. Nishimura N, Yamamoto T, Ota T (2009) Taurine feeding inhibits bile acid absorption from the ileum in rats fed a high cholesterol and high fat diet. Adv Exp Med Biol 643:285–291PubMedCrossRefGoogle Scholar
  56. Niu LG, Zhang MS, Liu Y, Xue WX, Liu DB, Zhang J, Liang YQ (2008) Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol 580:169–174PubMedCrossRefGoogle Scholar
  57. Obinata K, Maruyama T, Hayashi M, Watanabe T, Nittono H (1996) Effect of taurine on the fatty liver of children with simple obesity. Adv Exp Med Biol 403:607–613PubMedCrossRefGoogle Scholar
  58. Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937PubMedCrossRefGoogle Scholar
  59. Park E, Quinn MR, Wright CE, Schuller-Levis G (1993) Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol 54:119–124PubMedGoogle Scholar
  60. Park EJ, Bae JH, Kim SY, Lim JG, Baek WK, Kwon TK, Suh SI, Park JW, Lee IK, Ashcroft FM, Song DK (2004) Inhibition of ATP-sensitive K + channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Biochem Pharmacol 67:1089–1096PubMedCrossRefGoogle Scholar
  61. Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387PubMedCrossRefGoogle Scholar
  62. Pina-Zentella G, de la Rosa-Cuevas G, Vázquez-Meza H, Pina E, de Pina MZ (2011) Taurine in adipocytes prevents insulin-mediated H(2)o (2) generation and activates Pka and lipolysis. Amino AcidsGoogle Scholar
  63. Ragheb R, Shanab GM, Medhat AM, Seoudi DM, Adeli K, Fantus IG (2009) Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem Biophys Res Commun 389:211–216PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sato Y, Ogata E, Fujita T (1991) Hypotensive action of taurine in DOCA-salt rats-involvement of sympathoadrenal inhibition and endogenous opiate. Jpn Circ J 55:500–508PubMedCrossRefGoogle Scholar
  65. Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2PubMedCrossRefGoogle Scholar
  66. Shi YR, Gao L, Wang SH, Bu DF, Zhang BH, Jiang HF, Pang YZ, Tang CS (2003) Inhibition of taurine transport by high concentration of glucose in cultured rat cardiomyocytes. Metabolism 52:827–833PubMedCrossRefGoogle Scholar
  67. Stephan ZF, Lindsey S, Hayes KC (1987) Taurine enhances low density lipoprotein binding. Internalization and degradation by cultured Hep G2 cells. J Biol Chem 262:6069–6073PubMedGoogle Scholar
  68. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCrossRefGoogle Scholar
  69. Takahashi K, Azuma M, Taira K, Baba A, Yamamoto I, Schaffer SW, Azuma J (1997) Effect of taurine on angiotensin II-induced hypertrophy of neonatal rat cardiac cells. J Cardiovasc Pharmacol 30:725–730PubMedCrossRefGoogle Scholar
  70. Tenner TE Jr, Zhang XJ, Lombardini JB (2003) Hypoglycemic effects of taurine in the alloxan-treated rabbit, a model for type 1 diabetes. Adv Exp Med Biol 526:97–104PubMedCrossRefGoogle Scholar
  71. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147:3276–3284PubMedCrossRefGoogle Scholar
  72. Victor VM, Rocha M, Herance R, Hernandez-Mijares A (2011) Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17:3947–3958PubMedCrossRefGoogle Scholar
  73. Wang L, Zhang L, Yu Y, Wang Y, Niu N (2008) The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren Fail 30:763–771PubMedCrossRefGoogle Scholar
  74. Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91:261–270PubMedCrossRefGoogle Scholar
  75. Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y (2010) The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208:19–25PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wu N, Lu Y, He B, Zhang Y, Lin J, Zhao S, Zhang W, Li Y, Han P (2010) Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract 90:288–296PubMedCrossRefGoogle Scholar
  77. Xiao C, Giacca A, Lewis GF (2008) Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 51:139–146PubMedCrossRefGoogle Scholar
  78. Yamamoto J, Akabane S, Yoshimi H, Nakai M, Ikeda M (1985) Effects of taurine on stress-evoked hemodynamic and plasma catecholamine changes in spontaneously hypertensive rats. Hypertension 7:913–922PubMedCrossRefGoogle Scholar
  79. Yamamoto K, Yoshitama A, Sakono M, Nasu T, Murakami S, Fukuda N (2000) Dietary taurine decreases hepatic secretion of cholesterol ester in rats fed a high-cholesterol diet. Pharmacology 60:27–33PubMedCrossRefGoogle Scholar
  80. Yamori Y, Nara Y, Ikeda K, Mizushima S (1996) Is taurine a preventive nutritional factor of cardiovascular diseases or just a biological marker of nutrition. Adv Exp Med Biol 403:623–629PubMedCrossRefGoogle Scholar
  81. Yamori Y, Liu L, Mori M, Sagara M, Murakami S, Nara Y, Mizushima S (2009) Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv Exp Med Biol 643:13–25PubMedCrossRefGoogle Scholar
  82. Yamori Y, Taguchi T, Mori H, Mori M (2010) Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci 17(Suppl1):S21PubMedCrossRefGoogle Scholar
  83. Yanagita T, Han SY, Hu Y, Nagao K, Kitajima H, Murakami S (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 7:38PubMedCentralPubMedCrossRefGoogle Scholar
  84. Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712PubMedGoogle Scholar
  85. Zeng K, Xu H, Mi M, Zhang Q, Zhang Y, Chen K, Chen F, Zhu J, Yu X (2009) Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem Res 34:244–254PubMedCrossRefGoogle Scholar
  86. Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S (2003) Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26:267–271PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.R&D Laboratories, Self Medication BusinessTaisho Pharmaceutical Co. LtdSaitama-shiJapan
  2. 2.R&D Headquarters, Self Medication BusinessTaisho Pharmaceutical Co. LtdToshima-kuJapan

Personalised recommendations