Amino Acids

, Volume 46, Issue 1, pp 47–56 | Cite as

Role of taurine in the pathologies of MELAS and MERRF

  • Stephen W. SchafferEmail author
  • Chian Ju Jong
  • Takashi Ito
  • Junichi Azuma
Review Article


Taurine is an abundant β-amino acid that concentrates in the mitochondria, where it participates in the conjugation of tRNAs for leucine, lysine, glutamate and glutamine. The formation of 5-taurinomethyluridine-tRNA strengthens the interaction of the anticodon with the codon, thereby promoting the decoding of several codons, including those for AAG, UUG, CAG and GAG. By preventing these series of events, taurine deficiency appears to diminish the formation of 5-taurinomethyluridine and causes inefficient decoding for the mitochondrial codons of leucine, lysine, glutamate and glutamine. The resulting reduction in the biosynthesis of mitochondria-encoded proteins deprives the respiratory chain of subunits required for the assembly of respiratory chain complexes. Hence, taurine deficiency is associated with a reduction in oxygen consumption, an elevation in glycolysis and lactate production and a decline in ATP production. A similar sequence of events takes place in mitochondrial diseases MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fiber syndrome). In both diseases, mutations in their respective tRNAs interfere with the formation of 5-taurinomethyluridine in the wobble position. Hence, the taurine-deficient phenotype resembles the phenotypes of MELAS and MERRF.


Taurine deficiency Mitochondrial diseases Wobble hypothesis Mitochondrial protein synthesis Electron transport chain function 


Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Antonicka H, Floryk D, Klement P, Stratilova L, Hermanska J, Houstkova H, Kalous M, Drahota Z, Zeman J, Houstek J (1999) Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres (MERRF) at position 8344 n5. Biochem J 342:537–544PubMedCrossRefGoogle Scholar
  2. Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF (1999) Single atom modification (O to S) of tRNA confers ribosome binding. RNA 5:188–194PubMedCrossRefGoogle Scholar
  3. Bagley PJ, Stipanuk MH (1995) Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J Nutr 125:933–940PubMedGoogle Scholar
  4. Bentlage HACM, Attardi G (1996) Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell lines carrying the 3243 mutation associated with the MELAS encephalomyopathy: shift towards mutant genotype and role of mtDNA copy number. Hum Mol Gen 5:197–205PubMedCrossRefGoogle Scholar
  5. Bentlage H, de Coo R, ter Laak H, Senger R, Trijbels F, Ruitenbeek W, Schlote W, Pfeiffer K, Gencic S, von Jagow G, Schagger H (1995) Human diseases with defects in oxidative phosphorylation. Eur J Biochem 227:909–915PubMedCrossRefGoogle Scholar
  6. Bindoff LA, Desnuelle C, Birch-Machin MA, Pellissier JF, Serratrice G, Dravet C, Bureau M, Howell N, Turnbull DM (1991) Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): a clinical, biochemical and molecular study. J Neurol Sci 102:17–24PubMedCrossRefGoogle Scholar
  7. Borner GV, Zeviani M, Tiranti V, Carrara F, Hoffmann S, Gerbitz KD, Lochmuller H, Pongratz D, Klopstock T, Melberg A, Holme E, Paabo S (2000) Decreased aminoacylation of mutant tRNAs in MELAS but no in MERRF patients. Hum Mol Genet 9:467–475PubMedCrossRefGoogle Scholar
  8. Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C (2004) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48PubMedCrossRefGoogle Scholar
  9. Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138PubMedCrossRefGoogle Scholar
  10. Chinnery PF, Turnbull DM (2001) Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 106:94–101PubMedCrossRefGoogle Scholar
  11. Chomyn A (1998) The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet 62:745–751PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chomyn A, Enriquez JA, Micol V, Fernandez-Silva P, Attardi G (2000) The mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutant causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 275:19198–19209PubMedCrossRefGoogle Scholar
  13. Cochella L, Green R (2004) Wobble during decoding: more than third-position promiscuity. Nat Struct Mol Biol 11:1160–1162PubMedCrossRefGoogle Scholar
  14. Du W, Li W, Chen G, Cao H, Tang H, Tang X, Jin Q, Sun Z, Zhao H, Zhou W, He S, Lv Y, Zhao J, Zhang X (2009) Detection of known base mutations in human mitochondrial DNA of MERRF and MELAS by biochip technology. Biosens Bioelectron 24:2371–2376PubMedCrossRefGoogle Scholar
  15. El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468PubMedGoogle Scholar
  16. El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536PubMedCrossRefGoogle Scholar
  17. Enriquez JA, Chomyn A, Attardi G (1995) MtDNA mutation in MERRF syndrome cause defective aminoacylation of tRNALys and premature translation termination. Nature Genet 10:47–55PubMedCrossRefGoogle Scholar
  18. Finsterer J (2007) Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 116:1–14PubMedCrossRefGoogle Scholar
  19. Finsterer J (2012) Inherited mitochondrial disorders. Adv Expt Med Biol 942:187–213CrossRefGoogle Scholar
  20. Flierl A, Reichmann H, Seibel P (1997) Pathophysiology of the MELAS 3243 transition mutation. J Biol Chem 272:27189–27196PubMedCrossRefGoogle Scholar
  21. Gaull GE (1989) Taurine in pediatric nutrition: review and update. Pediatrics 83:433–442PubMedGoogle Scholar
  22. Hayes KC, Pronczuk A, Addesa AE, Stephan ZF (1989) Taurine modulates platelet aggregation in cats and humans. Am J Clin Nutr 49:1211–1216PubMedGoogle Scholar
  23. Helm M, Florentz C, Chomyn A, Attardi G (1999) Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res 27:756–763PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hirano M, DiMauro S (1996) Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane RJF (ed) Handbook of Muscle Disease, vol 1. Marcel Dekker Inc, New York, pp 479–504Google Scholar
  25. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  26. Jacobs HT, Holt IJ (2000) The np 3243 MELAS mutation: damned if you aminoacylate, damned if you don’t. Hum Mol Genetics 9:463–465CrossRefGoogle Scholar
  27. James AM, Wei Y-H, Pang C-Y, Murphy MP (1996) Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318:401–407PubMedGoogle Scholar
  28. James AM, Sheard PW, Wei YH, Murphy MP (1999) Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations. Eur J Biochem 259:462–469PubMedCrossRefGoogle Scholar
  29. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232PubMedCrossRefGoogle Scholar
  30. Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci 101:15070–15075PubMedCrossRefGoogle Scholar
  31. Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T (2005) Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci 102:7127–7132PubMedCrossRefGoogle Scholar
  32. Kurata S, Ohtsuki T, Wada T, Kirino Y, Takai K, Saigo K, Watanabe K, Suzuki T (2003) Decoding property of C5 uridine modification at the wobble position of tRNA anticodon. Nucleic Acids Res 3:245–246Google Scholar
  33. Kurata S, Weixlbaumer A, Ohtsuki T, Shimazaki T, Wada T, Kirino Y, Takai K, Watanabe K, Ramakrishnan V, Suzuki T (2008) Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilizes U-G wobble pairing during decoding. J Biol Chem 283:18801–18811PubMedCrossRefGoogle Scholar
  34. Larsson NG, Tulinius MH, Holme F, Oldfois A, Anderson O, Wahlstrom J, Aasly J (1992) Segregation and manifestations of the mtDNA tRNALys A-to-G *8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am Hum Genet 51:1201–1212Google Scholar
  35. Li R, Guan MX (2010) Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 30:2147–2154PubMedCentralPubMedCrossRefGoogle Scholar
  36. Masucci JP, Schon EA, King MP (1997) Point mutations in the mitochondrial tRNALys gene: implications for pathogenesis and mechanism. Mol Cell Biochem 174:215–219PubMedCrossRefGoogle Scholar
  37. Molchanova SM, Oja SS, Saransaari P (2007) Inhibitory effect of taurine on veratridine-evoked D-[3H] aspartate release from murine corticostriatal slices: involvement of chloride channels and mitochondria. Brain Res 1130:95–102PubMedCrossRefGoogle Scholar
  38. Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA (1992) The mitochondrial tRNALeu(UUR) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 50:934–949PubMedCentralPubMedGoogle Scholar
  39. Mortensen OH, Olsen HL, Fandsen L, Nielsen PE, Nielsen FC, Grunnet N, Quistorff B (2010) Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle: protective effect of taurine. Pediatr Res 67:47–53PubMedCrossRefGoogle Scholar
  40. Mozaffari MS, Tan BH, Lucia MA, Schaffer SW (1986) Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharmacol 35:985–989PubMedCrossRefGoogle Scholar
  41. Murphy FV IV, Ramakrishnana V, Malkiewicz A, Agris PF (2004) The role of modifications in codon discrimination by tRNAUUULys. Nat Struct Mol Biol 11:1186–1191PubMedCrossRefGoogle Scholar
  42. Obermaier-Kusser B, Paetzke-Brunner I, Enter C, Muller-Hocker J, Zierz S, Ruitenbeek W, Gerbitz KD (1991) Respiratory chain activity in tissues from patients (MELAS) with a point mutation of the mitochondrial genome [tRNALeu(UUR)]. FEBS Lett 286:67–70PubMedCrossRefGoogle Scholar
  43. Pallotti F, Baracca A, Hernandez-Ros E, Walker WF, Solaini G, Lenaz G, Melzi D’Eril GV, DiMauro S, Schon EA, Davidson MM (2004) Biochemical analysis of respiratory function in cybrid cell lines harbouring mitochondrial DNA mutations. Biochem J 384:287–293PubMedCrossRefGoogle Scholar
  44. Palmi M, Tchuisseu-Youmbi G, Fusi F, Sgaragli GP, Dixon HBF, Frosini M, Tipton KF (1999) Potentiation of mitochondrial Ca sequestration by taurine. Biochem Pharmacol 58:1123–1131PubMedCrossRefGoogle Scholar
  45. Palmi M, Tchuisseu G, Sgaragli G, Meini A, Benocci A, Fusi F, Frosini M, Della Corte L, Davey G, Tipton KF (2000) Adv Exp Med Biol 483:87–96Google Scholar
  46. Pang C-Y, Lee H-C, Wei Y-H (2001) Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract 54(Suppl 2):S45–S65PubMedCrossRefGoogle Scholar
  47. Park H, Davidson E, King MP (2003) The pathogenic A3243G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry 42:958–964PubMedCrossRefGoogle Scholar
  48. Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387PubMedCrossRefGoogle Scholar
  49. Sang-Hoon L, Hyun-Young L, So-Yeon K, In-Kyu L, Dae-Kyu S (2004) Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract 66S:S69–S74CrossRefGoogle Scholar
  50. Sarnat HB, Marin-Garcia J (2005) Pathology of mitochondrial encephalomyopathies. Can J Neurol Sci 32:152–166PubMedGoogle Scholar
  51. Sissler M, Helm M, Frugier M, Giege R, Florentz C (2004) Aminoacylation properties of pathology-related human mitochondrial tRNALys variants. RNA 10:841–853PubMedCrossRefGoogle Scholar
  52. Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158PubMedCrossRefGoogle Scholar
  53. Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812PubMedCrossRefGoogle Scholar
  54. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCrossRefGoogle Scholar
  55. Ugalde C, Triepels RH, Coenen MJH, van den Heuvel LP, Smeeets R, Uusimaa J, Briones P, Campistol J, Majamaa K, Smeitink JAM, Nijtmans LGJ (2003) Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 54:665–669PubMedCrossRefGoogle Scholar
  56. Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, Suzuki T (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. J Biol Chem 280:1613–1624PubMedCrossRefGoogle Scholar
  57. Vinton NE, Laidlaw SA, Ament ME, Kopple JD (1987) Taurine concentrations in plasma, blood cells and urine of children undergoing long-term total parenteral nutrition. Pediatr Res 21:399–403PubMedCrossRefGoogle Scholar
  58. Von Kleist-Retzow JC, Hornig-Do HT, Scauen M, Eckertz S, Dinh TAD, Stassen F, Lottmann N, Bust M, Galunska B, Wielckens K, Hein W, Beuth J, Braun JM, Fischer JH, Ganitkevich VY, Maniura-Weber K, Wiesner RJ (2007) Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced aerobic glycolysis due to low ATP steady state levels. Expt Cell Res 313:3076–3089CrossRefGoogle Scholar
  59. Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Monnighoff I, Buchczyk D, Donner M, Flogel U, Kappert G, Soboll S, Beer S, Pfeffer K, Marschall HU, Gabrielsen M, Amiry-Moghaddam M, Ottersen OP, Dienes HP, Haussinger D (2006) Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 20:574–576PubMedGoogle Scholar
  60. Weixlbaumer A, Murphy FV IV, Dziergowska A, Malkiewicz A, Vendeix FAP, Agris PF, Ramakrishnana V (2007) Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14:498–502PubMedCentralPubMedCrossRefGoogle Scholar
  61. Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K (2001) Wobble modification in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802PubMedCrossRefGoogle Scholar
  62. Yasukawa T, Suzuki T, Ohta S, Watanabe K (2002) Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion 2:129–141PubMedCrossRefGoogle Scholar
  63. Yasukawa T, Kirino Y, Ishil N, Holt IJ, Jacobs HT, Makifuchi T, Fukuhara N, Ohta S, Suzuki T, Watanabe K (2005) Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett 579:2948–2952PubMedCrossRefGoogle Scholar
  64. Yoneda M, Miyatake T, Attardi G (1994) Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol 14:2699–2712PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Stephen W. Schaffer
    • 1
    Email author
  • Chian Ju Jong
    • 1
  • Takashi Ito
    • 2
  • Junichi Azuma
    • 2
  1. 1.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobileUSA
  2. 2.School of PharmacyHyogo University of Health SciencesKobeJapan

Personalised recommendations