Skip to main content
Log in

Leucine accelerates blood ethanol oxidation by enhancing the activity of ethanol metabolic enzymes in the livers of SHRSP rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Chronic ethanol consumption induces liver diseases, such as alcoholic hepatitis and cirrhosis. The enhancement of alcohol oxidation is important in the prevention of these liver diseases. Chronic supplementation with branched chain amino acids (BCAAs) prevents liver cirrhosis. Therefore, BCAAs may be associated with enhanced ethanol oxidation. To evaluate this hypothesis, we investigated the effect of the administration of individual BCAAs on ethanol oxidation and changes in alcohol-metabolizing enzyme activities following acute alcohol intake in rats. Blood ethanol concentrations and the activities of alcohol-metabolizing enzymes, such as alcohol dehydrogenase (ADH) and low and high Km aldehyde dehydrogenase (ALDH), were measured in the liver following acute ethanol administration in rats; the ethanol was administered 30 min after the treatment with amino acids [such as leucine (Leu), isoleucine (Ile), valine (Val) or alanine (Ala)]. Leu significantly decreased the blood ethanol concentration 1 h after ethanol administration compared to the water-treated control (C) [C 0.46 ± 0.09, Leu 0.18 ± 0.04, Ile 0.27 ± 0.09, Val 0.46 ± 0.1, Ala 0.43 ± 0.06, mean ± SEM (g/l), P < 0.05]. In addition, leucine significantly stimulated ADH activity 30 min after ethanol intake [C 0.042 ± 0.014, Leu 0.090 ± 0.016, Ile 0.042 ± 0.008, Val 0.022 ± 0.010, Ala 0.070 ± 0.016, mean ± SEM (unit/mg protein), P < 0.05] and low Km ALDH activity 15 min after ethanol intake [C 0.51 ± 0.63, Leu 3.72 ± 0.66, Ile 1.26 ± 0.89, Val: ND, Ala 1.86 ± 1.57, mean ± SEM (unit/mg protein), P < 0.05]. However, leucine and its metabolite α-keto-isocaproic acid did not enhance ethanol clearance in isolated rat hepatocytes. These results indicate that leucine accelerates ethanol oxidation by indirectly enhancing ADH and low Km ALDH activities in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCAAs:

Branched-chain amino acids

Leu:

Leucine

Ile:

Isoleucine

Val:

Valine

Ala:

Alanine

KIC:

α-Keto-isocaproic acid

KMV:

α-Keto-β-methyl valeric acid

ADH:

Alcohol dehydrogenase

ALDH:

Aldehyde dehydrogenase

GOT:

Glutamate oxaloacetate transaminase

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor-α

mTOR:

Mammalian target of rapamycin

SHRSP:

Spontaneously hypertensive stroke prone

NAD:

Nicotinamide adenine dinucleotide

References

  • Beauge F, Mangeney M, Nordmann J, Nordmann R (1980) Comparative study of the effect of amino acids on ethanol oxidation in isolated hepatocytes from starved and fed rats. Adv Exp Med Biol 132:393–402

    PubMed  CAS  Google Scholar 

  • Bernal CA, Vazquez JA, Adibi SA (1993) Leucine metabolism during chronic ethanol consumption. Metabolism 42(9):1084–1086

    Article  PubMed  CAS  Google Scholar 

  • Cronholm T (1993) Ethanol metabolism in isolated hepatocytes. Effects of methylene blue, cyanamide and penicillamine on the redox state of the bound coenzyme and on the substrate exchange at alcohol dehydrogenase. Biochem Pharmacol 45(3):553–558

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Preedy VR, Paice AG, Hesketh JE, Peters TJ, Patel VB, Volpi E, Mawatari K, Masaki H, Mori M, Torii K (2001) Ethanol and protein metabolism. Alcohol Clin Exp Res 25(5 Suppl ISBRA):262S–268S

    Article  PubMed  CAS  Google Scholar 

  • Deaciuc IV, D’Souza NB, Lang CH, Spitzer JJ (1992) Effects of acute alcohol intoxication on gluconeogenesis and its hormonal responsiveness in isolated, perfused rat liver. Biochem Pharmacol 44(8):1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Deitrich RA, Petersen D, Vasiliou V (2007) Removal of acetaldehyde from the body. Novartis Found Symp 285:23–40 discussion 40–51, 198–199

    Article  PubMed  CAS  Google Scholar 

  • Ehrig T, Bosron WF, Li TK (1990) Alcohol and aldehyde dehydrogenase. Alcohol Alcohol 25(2–3):105–116

    PubMed  CAS  Google Scholar 

  • Holecek M, Tilser I, Skopec F, Sprongl L (1996) Leucine metabolism in rats with cirrhosis. J Hepatol 24(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Holt S (1981) Observations on the relation between alcohol absorption and the rate of gastric emptying. Can Med Assoc J 124(3):267–277, 297

    Google Scholar 

  • Kajiwara K, Okuno M, Kobayashi T, Honma N, Maki T, Kato M, Ohnishi H, Muto Y, Moriwaki H (1998) Oral supplementation with branched-chain amino acids improves survival rate of rats with carbon tetrachloride-induced liver cirrhosis. Dig Dis Sci 43(7):1572–1579

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Kim CH, Ohtomo IM, Yokomukai Y, Komai M, Morimatsu F (1991) Nutritional studies of the roles of dietary protein levels and umami in the preference response to sodium chloride for experimental animals. Physiol Behav 49(5):997–1002

    Article  PubMed  CAS  Google Scholar 

  • Koch OR, Pani G, Borrello S, Colavitti R, Cravero A, Farre S, Galeotti T (2004) Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med 25(1–2):191–198. doi:10.1016/j.mam.2004.02.019

    Article  PubMed  CAS  Google Scholar 

  • Koivisto T, Eriksson CJ (1994) Hepatic aldehyde and alcohol dehydrogenases in alcohol-preferring and alcohol-avoiding rat lines. Biochem Pharmacol 48(8):1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Lakshman MR, Chambers LL, Chirtel SJ, Ekarohita N (1988) Roles of hormonal and nutritional factors in the regulation of rat liver alcohol dehydrogenase activity and ethanol elimination rate in vivo. Alcohol Clin Exp Res 12(3):407–411

    Article  PubMed  CAS  Google Scholar 

  • Lardeux BR, Mortimore GE (1987) Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J Biol Chem 262(30):14514–14519

    PubMed  CAS  Google Scholar 

  • Leevy CM, Moroianu SA (2005) Nutritional aspects of alcoholic liver disease. Clin Liver Dis 9(1):67–81. doi:10.1016/j.cld.2004.11.003

    Article  PubMed  Google Scholar 

  • Lieber CS, Gentry RT, Baraona E (1994) First pass metabolism of ethanol. Alcohol Alcohol Suppl 2:163–169

    PubMed  CAS  Google Scholar 

  • Liu WH, Liu TC, Yin MC (2008) Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem Toxicol 46(5):1503–1509. doi:10.1016/j.fct.2007.12.013

    Article  PubMed  CAS  Google Scholar 

  • Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I (2005) Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res 33(1):27–32. doi:10.1016/j.hepres.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki S, Gordon E, Lieber CS (1981) Increased alcohol dehydrogenase independent ethanol oxidation at high ethanol concentrations in isolated rat hepatocytes: the effect of chronic ethanol feeding. J Pharmacol Exp Ther 217(1):133–137

    PubMed  CAS  Google Scholar 

  • Mezey E, Potter JJ, Rhodes DL (1986) Effect of growth hormone on alcohol dehydrogenase activity in hepatocyte culture. Hepatology 6(6):1386–1390

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Potter JJ, Mishra L, Sharma S, Janicot M (1990) Effect of insulin-like growth factor I on rat alcohol dehydrogenase in primary hepatocyte culture. Arch Biochem Biophys 280(2):390–396

    Article  PubMed  CAS  Google Scholar 

  • Milner RD (1969) Stimulation of insulin secretion in vitro by essential aminoacids. Lancet 1(7605):1075–1076

    Article  PubMed  CAS  Google Scholar 

  • Morgan MY, Marshall AW, Milsom JP, Sherlock S (1982) Plasma amino-acid patterns in liver disease. Gut 23(5):362–370

    Article  PubMed  CAS  Google Scholar 

  • Oh SI, Lee MS, Kim CI, Song KY, Park SC (2002) Aspartate modulates the ethanol-induced oxidative stress and glutathione utilizing enzymes in rat testes. Exp Mol Med 34(1):47–52

    PubMed  CAS  Google Scholar 

  • Oneta CM, Simanowski UA, Martinez M, Allali-Hassani A, Pares X, Homann N, Conradt C, Waldherr R, Fiehn W, Coutelle C, Seitz HK (1998) First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying. Gut 43(5):612–619

    Article  PubMed  CAS  Google Scholar 

  • Peng HC, Chen YL, Chen JR, Yang SS, Huang KH, Wu YC, Lin YH, Yang SC (2011) Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats. J Nutr Biochem 22(3):282–288. doi:10.1016/j.jnutbio.2010.02.006

    Article  PubMed  CAS  Google Scholar 

  • Siegel FL, Roach MK, Pomeroy LR (1964) Plasma amino acid patterns in alcoholism: the effects of ethanol loading. Proc Natl Acad Sci USA 51:605–611

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Patel DG, Snyder AK (1980) Ethanol inhibition of insulin secretion by perfused rat islets. Acta Endocrinol 93(1):61–66

    PubMed  CAS  Google Scholar 

  • Sugano T, Handler JA, Yoshihara H, Kizaki Z, Thurman RG (1990) Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver. J Biol Chem 265(35):21549–21553

    PubMed  CAS  Google Scholar 

  • Tanaka T, Ando M, Yamashita T, Toda T, Monna T, Nishiguchi S, Matsui T, Kuroki T, Otani S, Maezono K et al (1993) Effects of alanine and glutamine administration on the inhibition of liver regeneration by acute ethanol treatment. Alcohol Alcohol Suppl 1B:41–45

    PubMed  CAS  Google Scholar 

  • Tanaka T, Imano M, Yamashita T, Monna T, Nishiguchi S, Kuroki T, Otani S, Maezono K, Mawatari K (1994) Effect of combined alanine and glutamine administration on the inhibition of liver regeneration caused by long-term administration of alcohol. Alcohol Alcohol Suppl 29(1):125–132

    PubMed  CAS  Google Scholar 

  • Tomiya T, Nishikawa T, Inoue Y, Ohtomo N, Ikeda H, Tejima K, Watanabe N, Tanoue Y, Omata M, Fujiwara K (2007) Leucine stimulates HGF production by hepatic stellate cells through mTOR pathway. Biochem Biophys Res Commun 358(1):176–180. doi:10.1016/j.bbrc.2007.04.093

    Article  PubMed  CAS  Google Scholar 

  • Torii K (1997) A new pharmacological and physiological aspects of L-amino acids. Nihon Yakurigaku Zasshi 110(Suppl 1):28P–32P

    Article  PubMed  Google Scholar 

  • Vary TC, Deiter G, Goodman SA (2005) Acute alcohol intoxication enhances myocardial eIF4G phosphorylation despite reducing mTOR signaling. Am J Phys Heart Circ Phys 288(1):H121–H128. doi:10.1152/ajpheart.00440.2004

    Article  CAS  Google Scholar 

  • Venerando R, Miotto G, Kadowaki M, Siliprandi N, Mortimore GE (1994) Multiphasic control of proteolysis by leucine and alanine in the isolated rat hepatocyte. Am J Phys 266(2 Pt 1):C455–C461

    CAS  Google Scholar 

  • Wands JR, Carter EA, Bucher NL, Isselbacher KJ (1979) Inhibition of hepatic regeneration in rats by acute and chronic ethanol intoxication. Gastroenterology 77(3):528–531

    PubMed  CAS  Google Scholar 

  • Xu X, Ingram RL, Sonntag WE (1995) Ethanol suppresses growth hormone-mediated cellular responses in liver slices. Alcohol Clin Exp Res 19(5):1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Yang SC, Ito M, Morimatsu F, Furukawa Y, Kimura S (1993) Effects of amino acids on alcohol intake in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol 39(1):55–61

    Article  PubMed  CAS  Google Scholar 

  • Yang SC, Ito M, Furukawa Y, Kimura S (1994) Comparative study of alcohol metabolism in stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats fed normal or low levels of dietary protein. J Nutr Sci Vitaminol 40(6):547–555

    Article  PubMed  CAS  Google Scholar 

  • Yin SJ (1994) Alcohol dehydrogenase: enzymology and metabolism. Alcohol Alcohol Suppl 2:113–119

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hideyuki Sone, Mr. Osamu Fukaya and Mrs. Yumi Murakami for their assistance with the experimental trials.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Komai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, H., Ito, M., Furukawa, Y. et al. Leucine accelerates blood ethanol oxidation by enhancing the activity of ethanol metabolic enzymes in the livers of SHRSP rats. Amino Acids 43, 2545–2551 (2012). https://doi.org/10.1007/s00726-012-1406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1406-8

Keywords

Navigation