Skip to main content
Log in

Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

For elucidation of the regulation mechanisms of intrinsic amounts of d-serine (d-Ser) which modulates the neuro-transmission of N-methyl-d-aspartate receptors in the brain, mutant animals lacking serine racemase (SRR) and d-amino acid oxidase (DAO) were established, and the amounts of d-Ser in the tissues and physiological fluids were determined. d-Ser amounts in the frontal brain areas were drastically decreased followed by reduced SRR activity. On the other hand, a moderate but significant decrease in d-Ser amounts was observed in the cerebellum and spinal cord of SRR knock-out (SRR−/−) mice compared with those of control mice, although the amounts of d-Ser in these tissues were low. The amounts of d-Ser in the brain and serum were not altered with aging. To clarify the uptake of exogenous d-Ser into the brain tissues, we have determined the d-Ser of SRR−/− mice after oral administration of d-Ser for the first time, and a drastic increase in d-Ser amounts in all the tested tissues was observed. Because both DAO and SRR are present in some brain areas, we have established the double mutant mice lacking SRR and DAO for the first time, and the contribution of both enzymes to the intrinsic d-Ser amounts was investigated. In the frontal brain, most of the intrinsic d-Ser was biosynthesized by SRR. On the other hand, half of the d-Ser present in the hindbrain was derived from the biosynthesis by SRR. These results indicate that the regulation of intrinsic d-Ser amounts is different depending on the tissues and provide useful information for the development of treatments for neuronal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asakura S, Konno R (1997) Origin of d-serine present in urine of mutant mice lacking d-amino-acid oxidase activity. Amino Acids 12:213–223

    Article  CAS  Google Scholar 

  • Barañano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  PubMed  Google Scholar 

  • Basu AC, Tsai GE, Ma C-L, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    Article  PubMed  CAS  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    Article  PubMed  Google Scholar 

  • Brückner H, Schieber A (2001) Ascertainment of d-amino acids in germ-free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262

    Article  PubMed  Google Scholar 

  • Corrigan JJ (1969) d-Amino acids in animals. Science 164:142–149

    Article  PubMed  CAS  Google Scholar 

  • D’Aniello A, Vetere A, Petrucelli L (1993) Further study on the specificity of d-amino acid oxidase and of d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Physiol 105B:731–734

    Google Scholar 

  • Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  PubMed  CAS  Google Scholar 

  • Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) d-Amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res 652:297–303

    Article  PubMed  CAS  Google Scholar 

  • Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59:853–859

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Watanabe Y (1981) Fluorimetric determination of secondary amino acids by 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Chim Acta 130:377–383

    Article  CAS  Google Scholar 

  • Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491

    Article  PubMed  CAS  Google Scholar 

  • Iwama H, Takahashi K, Kure S, Hayashi F, Narisawa K, Tada K, Mizoguchi M, Takashima S, Tomita U, Nishikawa T (1997) Depletion of cerebral d-serine in non-ketotic hyperglycinemia: possible involvement of glycine cleavage system in control of endogenous d-serine. Biochem Biophys Res Commun 231:793–796

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) d-Serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nat Neurosci 14:603–611

    Article  PubMed  CAS  Google Scholar 

  • Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B 879:3108–3121

    Article  CAS  Google Scholar 

  • Kirschner DL, Green TK (2009) Separation and sensitive detection of d-amino acids in biological matrices. J Sep Sci 32:2305–2318

    Article  PubMed  CAS  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  PubMed  CAS  Google Scholar 

  • Konno R, Yasumura Y (1983) Mouse mutant deficient in d-amino acid oxidase activity. Genetics 103:277–285

    PubMed  CAS  Google Scholar 

  • Konno R, Sasaki M, Enami J, Niwa A (1995) Loss of HindIII cleavage sites in the d-amino acid oxidase gene in some inbred strains of mice. Amino Acids 8:97–107

    Article  CAS  Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher G, Fujii N, Homma H (eds) (2007) d-Amino acids: a new frontier in amino acids and protein research—practical methods and protocols. Nova Science Publishers, New York

    Google Scholar 

  • Konno R, Okamura T, Kasai N, Summer KH, Niwa A (2009) Mutant rat strain lacking d-amino-acid oxidase. Amino Acids 37:367–375

    Article  PubMed  CAS  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AHC, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  PubMed  CAS  Google Scholar 

  • Mitchell J, Paul P, Chen H, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561

    Article  PubMed  CAS  Google Scholar 

  • Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Honggou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K (2009) Determination of d-serine and d-alanine in the tissues and physiological fluids of mice with various d-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B 877:2506–2512

    Article  CAS  Google Scholar 

  • Miyoshi Y, Hamase K, Okamura T, Konno R, Kasai N, Tojo Y, Zaitsu K (2011) Simultaneous two-dimensional HPLC determination of free d-serine and d-alanine in the brain and periphery of mutant rats lacking d-amino-acid oxidase. J Chromatogr B 879:3184–3189

    Article  CAS  Google Scholar 

  • Miyoshi Y, Koga R, Oyama T, Han H, Ueno K, Masuyama K, Itoh Y, Hamase K (2012) HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 69:42–49

    Google Scholar 

  • Mori H, Inoue R (2010) Serine racemase knockout mice. Chem Biodivers 7:1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Zaitsu K (2007) Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino Acids 32:13–20

    Article  PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  PubMed  CAS  Google Scholar 

  • Mothet JP, Rouaud E, Sinet P-M, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard J-M (2006) A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5:267–274

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Horiike K, Maeda T (1994) Distribution of free d-serine in vertebrate brains. Brain Res 634:291–295

    Article  PubMed  CAS  Google Scholar 

  • Neims AH, Zieverink WD, Smilack JD (1966) Distribution of d-amino acid oxidase in bovine and human nervous tissues. J Neurochem 13:163–168

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B 879:3169–3183

    Article  CAS  Google Scholar 

  • Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R (2011) d-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B 879:3162–3168

    Article  CAS  Google Scholar 

  • Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, El-Magd RMA, Yorita K, Okano M, Watanabe T, Sano N, Bando Y, Arima K, Sakai T, Fukui K (2009) Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347

    Article  PubMed  CAS  Google Scholar 

  • Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S (2007) d-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26:4149–4159

    Article  PubMed  CAS  Google Scholar 

  • Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci USA 109:627–632

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Konno R, Nishio M, Niwa A, Yasumura Y, Enami J (1992) A single-base-pair substitution abolishes d-amino-acid oxidase activity in the mouse. Biochim Biophys Acta 1139:315–318

    Article  PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Stříšovský K, Jirásková J, Bařinka C, Majer P, Rojas C, Slusher BS, Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of l-serine to pyruvate. FEBS Lett 535:44–48

    Article  PubMed  Google Scholar 

  • Tojo Y, Hamase K, Konno R, Koyanagi S, Ohdo S, Zaitsu K (2009) Simple and rapid genotyping of d-amino acid oxidase gene recognizing a crucial variant in the ddY strain using microchip electrophoresis. J Sep Sci 32:430–436

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung L, Lange N, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SHR, Dutar P, Epelbaum J, Mothet JP, Billard JM (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Walker LC, Price DL, Cork LC (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 12:93–98

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999a) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999b) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Hawkinson JE, Goodnough DB (1996) Formation of d-serine from l-phosphoserine in brain synaptosomes. J Neurochem 67:1485–1490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tsuda, Dokkyo Medical University, for the preparation of Fig. 1. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.H. 22390007 and R.K. 17500258) and the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (Y.M.). The authors thank Shiseido Co., Ltd., (Tokyo, Japan) for their technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hamase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyoshi, Y., Konno, R., Sasabe, J. et al. Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase. Amino Acids 43, 1919–1931 (2012). https://doi.org/10.1007/s00726-012-1398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1398-4

Keywords

Navigation