Amino Acids

, Volume 46, Issue 1, pp 31–46 | Cite as

Taurine and central nervous system disorders

  • Janet Menzie
  • Chunliu Pan
  • Howard PrenticeEmail author
  • Jang-Yen WuEmail author
Review Article


In the present era, investigators seek to find therapeutic interventions that are multifaceted in their mode of action. Such targets provide the most advantageous routes for addressing the multiplicity of pathophysiological avenues that lead to neuronal dysfunction and death observed in neurological disorders and neurodegenerative diseases. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions in the central nervous system. In this review, we describe the mode of action of taurine and its clinical application in the neurological diseases: Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.


Taurine Neuroprotective mechanisms Alzheimer’s disease Parkinson’s disease Huntington’s disease 



This work was supported, in part, by the James and Esther King Biomedical Research Program, Florida Department of Health (grant #: 09KW-11), and the Schmidt Foundation, Charles E. Schmidt College of Medicine, Florida Atlantic University.


  1. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42:733–738PubMedGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedGoogle Scholar
  3. Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 30:1615–1621PubMedGoogle Scholar
  4. Alexander GE, Crutcher ME (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedGoogle Scholar
  5. Alom J, Mahy JN, Brandi N, Tolosa E (1991) Cerebrospinal fluid taurine in Alzheimer’s disease. Ann Neurol 30:735PubMedGoogle Scholar
  6. Alzheimer’s disease Education and Referral Center Web site. Alzheimer’s disease-unraveling the mystery.
  7. Alzheimer A (1907) A characteristic disease of the cerebral cortex. In: Bick K, Amaducci L, Pepeu G (eds) The early story of Alzheimer’s disease. Liviana Press, Padova, pp 1–3Google Scholar
  8. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403PubMedGoogle Scholar
  9. Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5:319–321PubMedGoogle Scholar
  10. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245PubMedGoogle Scholar
  11. Banerjee R, Vitvitsky V, Garg SK (2008) The undertow of sulfur metabolism on glutamatergic neurotransmission. Trends Biochem Sci 33:413–419PubMedGoogle Scholar
  12. Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131PubMedGoogle Scholar
  13. Bear M, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462PubMedGoogle Scholar
  14. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555PubMedGoogle Scholar
  15. Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Déglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17:1652–1663PubMedCentralPubMedGoogle Scholar
  16. Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708PubMedGoogle Scholar
  17. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137PubMedGoogle Scholar
  18. Bianchi L, Bolam JP, Galeffi F, Frosini M, Palmi M, Della Corte L (1996) In vivo release of taurine from rat neostriatum and substantia nigra. Adv Exp Med Biol 403:427–433PubMedGoogle Scholar
  19. Bianchi L, Colivicchi MA, Bolam JP, Della Corte L (1998) The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 87:171–180PubMedGoogle Scholar
  20. Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136PubMedGoogle Scholar
  21. Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheime’s disease. PLoS ONE 6:e23789PubMedCentralPubMedGoogle Scholar
  22. Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12:88–95PubMedGoogle Scholar
  23. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299:256–259PubMedGoogle Scholar
  24. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm 53:127–140Google Scholar
  25. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willi A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109PubMedGoogle Scholar
  26. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554PubMedGoogle Scholar
  27. Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 57:348–351PubMedGoogle Scholar
  28. Chen WQ (2000) Mode of action of taurine. Ph.D Dissertation, University of KansasGoogle Scholar
  29. Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid b-peptides. J Neurosci Res 60:65–72PubMedGoogle Scholar
  30. Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66:612–619PubMedGoogle Scholar
  31. Chen QS, Wei WZ, Shimahara T, Xie CW (2002) Alzheimer amyloid b-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Mem 77:354–371PubMedGoogle Scholar
  32. Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138PubMedGoogle Scholar
  33. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 30:1010–1014Google Scholar
  34. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420PubMedGoogle Scholar
  35. Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharm 81:891–909PubMedGoogle Scholar
  36. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529PubMedGoogle Scholar
  37. Davison AN, Kaczmarek LK (1971) Taurine—a possible neurotransmitter. Nature Lond 234:107–108PubMedGoogle Scholar
  38. Dawson R Jr, Pelleymounter MA, Cullen MJ, Gollub M, Liu S (1999) An age-related decline in striatal taurine is correlated with a loss of dopaminergic markers. Brain Res Bull 48:319–324PubMedGoogle Scholar
  39. Dawson R Jr, Baker D, Eppler B, Tang E, Shih D, Hern H, Hu M (2000) Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotox Res 2:1–15PubMedGoogle Scholar
  40. Del Olmo N, Handlera A, Alvarezb L, Bustamantec J, Martín del Ríoa R, Solísa JM (2003) Taurine-induced synaptic potentiation and the late phase of long-term potentiation are related mechanistically. Neuropharmacology 44:26–39PubMedGoogle Scholar
  41. Della Corte L, Bolam JP, Clarke DJ, Parry DM, Smith AD (1990) Sites of [3H] taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway. Eur J Neurosci 2:50–61PubMedGoogle Scholar
  42. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedGoogle Scholar
  43. Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026PubMedGoogle Scholar
  44. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21:4125–4133PubMedGoogle Scholar
  45. Dray A, Straughan DW (1976) Synaptic mechanisms in the substantia nigra. J Pharm Pharmacol 28:400–405PubMedGoogle Scholar
  46. El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328PubMedGoogle Scholar
  47. El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468PubMedGoogle Scholar
  48. El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536PubMedGoogle Scholar
  49. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197PubMedGoogle Scholar
  50. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073PubMedGoogle Scholar
  51. Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106PubMedGoogle Scholar
  52. Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26PubMedGoogle Scholar
  53. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neurol Pathol Exp Neurol 55:259–272Google Scholar
  54. Frey U, Huang YY, Kandel ER (1993) Effects of cAMP stimulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664PubMedGoogle Scholar
  55. Frosini M, Sesti C, Saponara S, Ricci L, Valoti M, Palmi M, Machetti F, Sgaragli G (2003) A specific taurine recognition site in the rabbit brain is responsible for taurine effects on thermoregulation. Br J Pharmacol 139:487–494PubMedGoogle Scholar
  56. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372PubMedGoogle Scholar
  57. Gerfen CF (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139PubMedGoogle Scholar
  58. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406PubMedGoogle Scholar
  59. Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318PubMedCentralPubMedGoogle Scholar
  60. Gleeson RA, Trapido-Rosenthal HG, Carr WE (1987) A taurine receptor model: taurine-sensitive olfactory cells in the lobster. Adv Exp Med Biol 217:253263Google Scholar
  61. Goodman Y, Mattson MP (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid peptide-induced oxidative injury. Exp Neurol 128:1–12PubMedGoogle Scholar
  62. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643PubMedGoogle Scholar
  63. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389PubMedGoogle Scholar
  64. Gu Z, Liu W, Yan Z (2009) Beta-amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulindependent protein kinase II synaptic distribution. J Biol Chem 284:10639–10649PubMedGoogle Scholar
  65. Haass C (2004) Take five-BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J 23:483–488PubMedGoogle Scholar
  66. Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 175:1039–1042Google Scholar
  67. Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 286:916–919PubMedGoogle Scholar
  68. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112PubMedGoogle Scholar
  69. Hagar HH (2004) The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett 151:335–343PubMedGoogle Scholar
  70. Harkany T, Abrahám I, Timmerman W, Laskay G, Tóth B, Sasvári M, Kónya C, Sebens JB, Korf J, Nyakas C, Zarándi M, Soós K, Penke B, Luiten PG (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12:2735–2745Google Scholar
  71. Hastings TG (1995) Enzymatic oxidation of dopamine: role of prostaglandin H synthase. J Neurochem 64:919–924PubMedGoogle Scholar
  72. Hayes KC (1985) Taurine requirement in primates. Nutr Rev 43:65–70PubMedGoogle Scholar
  73. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951PubMedGoogle Scholar
  74. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270–3274PubMedGoogle Scholar
  75. Heo JY, Park JH, Kim SJ, Seo KS, Han JS, Lee SH, Kim JM, Park JI, Park SK, Lim K, Hwang BD, Shong M, Kweon GR (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS ONE 7:e32629PubMedCentralPubMedGoogle Scholar
  76. Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, Keller PM, Yeager M, Wang H, Shughrue P, Kinney G, Joyce JG (2006) Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 45:15157–15167PubMedGoogle Scholar
  77. Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88:1673–1681PubMedGoogle Scholar
  78. Hofer A, Gasser T (2004) New aspects of genetic contributions to Parkinson’s disease. J Mol Neurosci 24:417–424PubMedGoogle Scholar
  79. Hoshi M, Takashima A, Murayama M, Yasutake K, Yoshida N, Ishiguro K, Hoshino T, Imahori K (1997) Nontoxic amyloid beta peptide 1–42 suppresses acetylcholine synthesis. Possible role in cholinergic dysfunction in Alzheimer’s disease. J Biol Chem 272:2038–2041PubMedGoogle Scholar
  80. Hs.DCR Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosome. Cell 72:971–983Google Scholar
  81. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410PubMedGoogle Scholar
  82. Huxtable RJ (1976) Metabolism and function of taurine in the heart. In: Huxtable R, Barbeau A (eds) Taurine. Raven press, New York, pp 99–119Google Scholar
  83. Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32:471–533PubMedGoogle Scholar
  84. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  85. Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511PubMedGoogle Scholar
  86. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14:115–140PubMedGoogle Scholar
  87. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695PubMedGoogle Scholar
  88. Jensen PH, Islam K, Kenney J, Nielsen MS, Power J, Gai WP (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem 275:21500–21507PubMedGoogle Scholar
  89. Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA 108:5819–5824PubMedGoogle Scholar
  90. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232PubMedGoogle Scholar
  91. Junyent F, Romero R, de Lemos L, Utrera J, Camins A, Pallàs M, Auladell C (2010) Taurine treatment inhibits CaMKII activity and modulates the presence of calbindin D28k, calretinin, and parvalbumin in the brain. J Neurosci Res 88:136–142PubMedGoogle Scholar
  92. Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R (1998) Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70:2179–2187PubMedGoogle Scholar
  93. Kawahara M, Kuroda Y (2000) Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 53:389–397PubMedGoogle Scholar
  94. Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci USA 96:11404–11409PubMedGoogle Scholar
  95. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA binding protein. Science 252:1708–1711PubMedGoogle Scholar
  96. Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346PubMedGoogle Scholar
  97. Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA 101:15070–15075PubMedGoogle Scholar
  98. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive Juvenile Parkinsonism. Nature 392:605–608PubMedGoogle Scholar
  99. Koeppen AH (1995) The history of iron in the brain. J Neurol Sci 134:1–9PubMedGoogle Scholar
  100. Kontro P, Oja SS (1987) Co-operativity in sodium-independent taurine binding to brain membranes in the mouse. Neuroscience 23:567–570PubMedGoogle Scholar
  101. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11:1505–1515PubMedGoogle Scholar
  102. Kozlowski DJ, Chen Z, Zhuang L, Fei YJ, Navarre S, Ganapathy V (2008) Molecular characterization and expression pattern of taurine transporter in zebrafish during embryogenesis. Life Sci 82:1004–1011PubMedGoogle Scholar
  103. Kudo Y, Akiyoshi E, Akagi H (1988) Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord. Br J Pharmacol 94:1051–1056PubMedGoogle Scholar
  104. Kumar R (2009) Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 491:1–6PubMedGoogle Scholar
  105. Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, Braeken D, Callewaert G, Bartic C, D’Hooge R, Martins IC, Rousseau F, Schymkowitz J, De Strooper B (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta 42 to Abeta 40 ratio. EMBO J 29:3408–3420PubMedGoogle Scholar
  106. Kuriyama K (1980) Taurine as a neuromodulator. Fed Proc 39:2680–2684PubMedGoogle Scholar
  107. Kuwert T, Lange HW, Langer K-J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113:1405–1423PubMedGoogle Scholar
  108. LaFontaine MA, Geddes JW, Banks A, Butterfield DA (2000) 3-Nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: insights into Huntington’s disease. Brain Res 858:356–362Google Scholar
  109. Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird ED, Bonilla E, de Young M, Avila-Gonzales AJ, Wexler NS, DiFiglia M, Gusella JF, MacDonald ME, Penney JB, Young AB, Vonsattel J-P (1995) Huntington’s disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37:218–230PubMedGoogle Scholar
  110. Langston JW, Ballard P, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980PubMedGoogle Scholar
  111. Lanska DJ (2000) George Huntington (1850–1916) and hereditary chorea. J Hist Neurosci 9:76–89PubMedGoogle Scholar
  112. Leon R, Wu H, Jin Y, Wei J, Buddhala C, Prentice H, Wu JY (2009) Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res 87:1185–1194PubMedGoogle Scholar
  113. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid beta protein assembly in the brain impairs memory. Nature 440:352–357PubMedGoogle Scholar
  114. Lima L, Cubillos S (1998) Taurine might be acting as a trophic factor in the retina by modulating phosphorylation of cellular proteins. J Neurosci Res 53:377–384PubMedGoogle Scholar
  115. Lin H, Bhatia R, La R (2001) Amyloid b protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444PubMedGoogle Scholar
  116. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by B-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90:7951–7955PubMedGoogle Scholar
  117. López-Colomé AM, Fragoso G, Salceda R (1991) Taurine receptors in membranes from retinal pigment epithelium cells in culture. Neuroscience 41:791–796PubMedGoogle Scholar
  118. Louzada PR, Paula-Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST (2004) Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518PubMedGoogle Scholar
  119. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1990) 3-Nitropropionic acid: exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498Google Scholar
  120. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452PubMedGoogle Scholar
  121. Macaione S, Ruggeri P, DeLuca F, Tucci G (1974) Free amino acids in developing rat retina. J Neurochem 22:887–891PubMedGoogle Scholar
  122. MacDermott AB, Dale BN (1987) Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids. Trend Neurosci 10:280–284Google Scholar
  123. Magnusson KR, Clements JR, Wu JY, Beitz AJ (1989) Colocalization of taurine and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 4:55–69PubMedGoogle Scholar
  124. Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain Res 134:18–23PubMedGoogle Scholar
  125. Mankovskaya IN, Serebrovskaya TV, Swanson RJ, Vavilova GL, Kharlamova ON (2000) Mechanisms of taurine antihypoxic and antioxidant action. High Alt Med Biol 1:105–110PubMedGoogle Scholar
  126. Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94PubMedGoogle Scholar
  127. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18:150–154PubMedGoogle Scholar
  128. Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer’s disease. J Neuropathol Exp Neuro 57:1041–1052Google Scholar
  129. Mattson MP (1997) Advances fuel Alzheimer’s conundrum. Nat Genet 17:254–256PubMedGoogle Scholar
  130. Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, Markham CH (1987) Reduced cerebral glucose metabolism in asymptomatic patients at risk for Huntington’s disease. New Eng J Med 316:357–362PubMedGoogle Scholar
  131. Miao J, Zhang J, Zheng L, Yu X, Zhu W, Zou S (2012) Taurine attenuates Streptococcus uberis-induced mastitis in rats by increasing T regulatory cells. Amino Acids 42:2417–2428PubMedGoogle Scholar
  132. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P (2001) Bcl-2 Prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276:18361–18374PubMedGoogle Scholar
  133. Milakovic T, Johnson GV (2005) Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 280:30773–30782PubMedGoogle Scholar
  134. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and Bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMedGoogle Scholar
  135. Molina JA, Jiménez-Jiménez FJ, Gomez P, Vargas C, Navarro JA, Ortí-Pareja M, Gasalla T, Benito-León J, Bermejo F, Arenas J (1997) Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. J Neurol Sci 150:123–127PubMedGoogle Scholar
  136. Morales I, Dopico JG, Sabate M, Gonzalez-Hernandez T, Rodriguez M (2007) Substantia nigra osmoregulation: taurine and ATP involvement. Am J Physiol Cell Physiol 292:C1934–C1941PubMedGoogle Scholar
  137. Moran J, Salazar P, Pasantes-Morales H (1988) Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp Eye Res 45:769–776Google Scholar
  138. Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387PubMedGoogle Scholar
  139. Navneet AK, Appukuttan TA, Pandey M, Mohanakumar KP (2008) Taurine fails to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion in mice. Amino Acids 35:457–461PubMedGoogle Scholar
  140. Neumann M, Tolnay M, Mackenzie IR (2009) The molecular basis of frontotemporal dementia. Exp Rev Mol Med. doi: 10.1017/S1462399409001136 Google Scholar
  141. Nicklas WJ, Yougster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729PubMedGoogle Scholar
  142. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212PubMedGoogle Scholar
  143. O’Byrne MB, Tipton KF (2000) Taurine-induced attenuation of MPP1 neurotoxicity in vitro: a possible role for the GABAA subclass of GABA receptors. Neurochem 74:2087–2093Google Scholar
  144. Oddo S, LaFerla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol 99:172–179Google Scholar
  145. Oja SS, Lahdesmaki P (1974) Is taurine an inhibitory neurotransmitter? Med Biol 52:138–143PubMedGoogle Scholar
  146. Oja SS, Saransaari P (2007) Pharmacology of taurine. Proc West Pharmacol 50:8–15Google Scholar
  147. Oja SS, Ahtee L, Kontro P, Paasonen MK (1985) Taurine biological actions and clinical perspectives. Alan R Liss Inc, New YorkGoogle Scholar
  148. Okamoto K, Kimura H, Sakai Y (1983) Taurine-induced increase of the Cl conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res 259:319–323PubMedGoogle Scholar
  149. Oliveira JM (2010) Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr 42:227–234PubMedGoogle Scholar
  150. Palkovits M, Elekes I, Lang T, Patthy A (1986) Taurine levels in discrete brain nuclei of rats. J Neurochem 47:1333–1335PubMedGoogle Scholar
  151. Pan C, Giraldo GS, Prentice H, Wu JY (2010) Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J Biomed Sci 1:S17Google Scholar
  152. Pan C, Prentice H, Price AL, Wu JY (2011) Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acid 43:1141–1146Google Scholar
  153. Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723PubMedGoogle Scholar
  154. Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST (2005) Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 49:1140–1148PubMedGoogle Scholar
  155. Pedersen WA, Kloczewiak MA, Blusztajn JK (1996) Amyloid beta-protein reduces acetyl-choline synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 93:8068–8071PubMedGoogle Scholar
  156. Philibert RA, Rogers KL, Dutton GR (1989) Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+. J Neurosci Res 22:167–171PubMedGoogle Scholar
  157. Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768PubMedGoogle Scholar
  158. Procter AW (2000) Abnormalities in non-cholinergic neurotransmitter systems in Alzheimer’s disease. In: O’Brien J, Ames D, Burns A (eds) Dementia, 2nd edn. Edward Arnold, Oxford, pp 433–442Google Scholar
  159. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662PubMedGoogle Scholar
  160. Reichelt KL, Edminson PD (1974) Biogenic amine specificity of cortical peptide synthesis in monkey brain. FEBS Lett 47:185–189PubMedGoogle Scholar
  161. Reijonen S, Putkonen N, Nørremølle A, Lindholm D, Korhonen L (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 14:950–960Google Scholar
  162. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons Huntington disease. Proc Natl Acad Sci USA 85:5733–5737PubMedGoogle Scholar
  163. Richfield EK, Maguire-Zeiss KA, Cox C, Gilmore J, Voorn P (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington’s disease patients. Ann Neurol 37:335–343PubMedGoogle Scholar
  164. Rivas-arancibia S, Alba I, Rodríguez AI, Tanja Zigova T, Willing AE, Brown WD, Cahill DW, Sanberg PR (2001) Taurine increases rat survival and reduces striatal damage caused by 3-nitropropionic acid. Int J Neurosci 108:55–67PubMedGoogle Scholar
  165. Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OF (2005) Soluble beta-amyloid 1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 25:11061–11070PubMedGoogle Scholar
  166. Ruotsalainen M, Ahtee L (1996) Intrastriatal taurine increases striatal extracellular dopamine in a tetrodotoxin-sensitive manner in rats. Neurosci Let 212:175–178Google Scholar
  167. Santa-Maria I, Hernandez F, Moreno FJ, Avial J (2007) Taurine, an inducer of tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. Neurosci Lett 429:91–94PubMedGoogle Scholar
  168. Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino Acids 19:509–526PubMedGoogle Scholar
  169. Schaffer SW, Azuma J, Matura JD (1995) Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 18:231–246Google Scholar
  170. Schaffer SW, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546PubMedGoogle Scholar
  171. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99PubMedGoogle Scholar
  172. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827PubMedGoogle Scholar
  173. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644PubMedGoogle Scholar
  174. Schulz S, Siemer H, Krug M, Höllt V (1999) Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 19:5683–5692PubMedGoogle Scholar
  175. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791PubMedGoogle Scholar
  176. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induces reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875PubMedGoogle Scholar
  177. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842PubMedCentralPubMedGoogle Scholar
  178. Shimo Y, Wichmann T (2009) Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum. Eur J Neurosci 29:104–113PubMedCentralPubMedGoogle Scholar
  179. Size C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2001) N-Methyl-d-aspartate receptor subunit. Proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 182:151–159Google Scholar
  180. Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253PubMedGoogle Scholar
  181. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811PubMedGoogle Scholar
  182. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122PubMedGoogle Scholar
  183. Spillantini MG, Crowther RA, Jakes R, Hasegawa M (1998) Alpha synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473PubMedGoogle Scholar
  184. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665PubMedGoogle Scholar
  185. Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147PubMedGoogle Scholar
  186. Su JH, Anderson AJ, Cummings B, Cotman CW (1994) Immunocytochemical evidence for apoptosis in Alzheimer’s disease. NeuroReport 5:2529–2533PubMedGoogle Scholar
  187. Sulaiman SA, Suliman FE, Barghouthi S (2003) Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine. Enzyme Inhib Med Chem 18:297–301Google Scholar
  188. Sun M, Gu Y, Zhao Y, Xu C (2011) Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids 40:1419–1429PubMedGoogle Scholar
  189. Sun M, Zhao Y, Gu Y, Xu C (2012) Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-kappaB. Amino Acids 42:1735–1747PubMedGoogle Scholar
  190. Sung DY, Walthall WW, Derby CD (1996) Identification and partial characterization of putative taurine receptor proteins from the olfactory organ of the spiny lobster. Comp Biochem Physiol B Biochem Mol Biol 115:19–26PubMedGoogle Scholar
  191. Tadros MG, Khalifa AE, Abdel-Naim AB, Arafa HM (2005) Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington’s disease phenotype. Pharmacol Biochem Behav 82:574–582PubMedGoogle Scholar
  192. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:C949–C953PubMedGoogle Scholar
  193. Takuma K, Yan SS, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97:312–316PubMedGoogle Scholar
  194. Tang XW, Deupree DL, Sun Y, Wu JY (1996) Biphasic effect of taurine on excitatory amino acid-induced neurotoxicity. In: Huxtable RJ, Azuma J, Kuriyama K, Nakagawa M, Baba A (eds) Taurine 2: basic and clinical aspects in advances in experimental medicine and biology, vol 43. Plenum Press, New York, pp 499–505Google Scholar
  195. Teaktong T, Graham AJ, Court JA, Perry RH, Jaros E, Johnson M, Hall R, Perry EK (2004) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49PubMedGoogle Scholar
  196. Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C (2011) Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190PubMedGoogle Scholar
  197. Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V, McPherson PS, Mandavilli BS, Van Houten B, Zeitlin S, McNiven M, Aebersold R, Hayden M, Parisi JE, Seeberg E, Dragatsis I, Doyle K, Bender A, Chacko C, McMurray CT (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209PubMedCentralPubMedGoogle Scholar
  198. Vaucher E, Aumont N, Pearson D, Rowe W, Poirier J, Kar S (2001) Amyloid peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and unimpaired rats. J Chem Neuroanat 21:323–329PubMedGoogle Scholar
  199. Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL (2004) Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine containing proteins. Mol Cell 14:95–104PubMedGoogle Scholar
  200. Verner A, Craig S, McGuire W (2007) Effect of taurine supplementation on growth and development in preterm or low birth weight infants. Cochrane Database Syst Rev 17:CD006072Google Scholar
  201. Vohra BP, Hui X (2001) Taurine protects against carbon tetrachloride toxicity in the cultured neurons and in vivo. Arch Physiol Biochem 109:90–94PubMedGoogle Scholar
  202. Wan FS, Li GH, Zhang J, Yu LH, Zhao XM (2008) Protective effects of taurine on myocardial mitochondria and their enzyme activities in rate with severe burn. Zhonghua Shao Shang Za Zhi 24:171–174PubMedGoogle Scholar
  203. Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J, Häussinger D (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J 18:577–579Google Scholar
  204. Wertkin AM, Turner RS, Pleasure SJ, Golde TE, Younkin SG, Trojanowski JQ, Lee VM (1993) Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular β-amyloid or A4 peptides. Proc Natl Acad Sci USA 90:9513–9517PubMedGoogle Scholar
  205. Winder DG, Mansuy LM, Osman M, Moallem TM, Kandel ER (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long term potentiation suppressed by calcineurin. Cell 92:25–37PubMedGoogle Scholar
  206. Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel RE (2005) Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J Neurosci 25:1071–1080PubMedGoogle Scholar
  207. Wu JY (1982) Purification and characterization of cysteic/cysteine sulfinic acids decarboxylase and l-glutamate decarboxylase in bovine brain. Proc Natl Acad Sci USA 79:4270–4274PubMedGoogle Scholar
  208. Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17:S1PubMedGoogle Scholar
  209. Wu JY, Moss LG, Chen MS (1979) Tissue and regional distribution of cysteic acid decarboxylase in bovine brain. A new assay method. Neurochem Res 4:201–212PubMedGoogle Scholar
  210. Wu JY, Johansen FF, Lin CT, Liu JW (1987) Taurine system in the normal and ischemic rat hippocampus. Adv Exp Med Biol 217:265–274PubMedGoogle Scholar
  211. Wu JY, Liao C, Lin CJ, Lee YH, Ho JY, Wu HT (1990) Taurine receptor in the mammalian brain. Prog Clin Biol Res 351:147–156PubMedGoogle Scholar
  212. Wu JY, Tang XW, Tsai WH (1992a) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268PubMedGoogle Scholar
  213. Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes HD, Wu JY, Tang XW, Tsai WH (1992b) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268PubMedGoogle Scholar
  214. Wu JY, Chen W, Tang XW, Jin H, Foos T, Schloss JV, Davis K, Faiman MD, Hsu CC (2000) Mode of action of taurine and regulation dynamics of its synthesis in the CNS. Adv Exp Med Biol 483:35–44PubMedGoogle Scholar
  215. Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY (2005) Mode of action of taurine as a neuroprotector. Brain Res 1038:123–131PubMedGoogle Scholar
  216. Wu J, Kohno T, Georgiev SK, Ikoma M, Ishii H, Petrenko AB, Baba H (2008) Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons. Neuro Report 19:333–337Google Scholar
  217. Wu JY, Wu H, Jin Y, Wei J, Sha D, Howarad P, Lee HH, Lin CH, Lee YH, Yang LL (2009) Mechanism of neuroprotective function of taurine. Adv Exp Med Biol 643:169–179PubMedGoogle Scholar
  218. Xu H, Greengard P, Gandy S (1995) Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J Biol Chem 270:23243–23245PubMedGoogle Scholar
  219. Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (1997) An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389:689–695PubMedGoogle Scholar
  220. Ye G, Tse AC, Yung W (1997) Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA- and glycine-linked chloride conductance. Brain Res 749:175–179PubMedGoogle Scholar
  221. Youdim MB, Ben Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54PubMedGoogle Scholar
  222. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682PubMedGoogle Scholar
  223. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529PubMedGoogle Scholar
  224. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44:601–607PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Program in Integrative BiologyFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of Biomedical SciencesFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations